Analysis of a greenhouse thermal performance using dynamic simulations

Abstract

Four different shapes of a 182 m2 research greenhouse were analyzed using dynamic simulations. The thermal performance was evaluated using different cover materials at an equal floor area. In developing countries, the selection of the greenhouse shape, structure, and cover material generally is made based on the availability of the materials and considering the initial investment costs. The greenhouse is located on a cold semi-arid (BSk) climate according to the Köppen climate classification. This study aimed to determine the best choice of the greenhouse shape and cover material according to a technical-economic analysis. The analysis was conducted from a technical-economic perspective for this specific climate region. The results show the heating and cooling energy consumption for different cover materials and greenhouse shapes. The economic analysis was made to assess the investment and operative costs through the life span of the greenhouse.

https://doi.org/10.15174/au.2019.2333
PDF (Español (España))

References

Ali, B., Bournet, P., Danjou, V., Morille, B., & Migeon, C. (2014). CFD simulations of the night-time condensation inside a closed glasshouse : Sensitivity analysis to outside external conditions , heating and glass properties. Biosystems Engineering, 127, 159–175. http://doi.org/10.1016/j.biosystemseng.2014.08.017

Almeida, P., Amorim, R., João, M., Farinha Mendes, J., & Lopes, V. (2012). Dynamic testing of systems – use of TRNSYS as an approach for parameter identification. Energy Procedia, 30, 1294–1303. http://doi.org/10.1016/j.egypro.2012.11.142

Alvarez-Sánchez, E., Leyva-Retureta, G., Portilla-Flores, E., & López-Velázquez, A. (2014). Evaluation of thermal behavior for an asymmetric greenhouse by means of dynamic simulations, 81, 152–159.

Chou, S. K., Chua, K. J., Ho, J. C., & Ooi, C. L. (2004). On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied, 77, 355–373. http://doi.org/10.1016/S0306-2619(03)00157-0

Fabrizio, E. (2012). Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy & Buildings, 53, 57–63. http://doi.org/10.1016/j.enbuild.2012.07.003

FAO. (2012). Energy-Smart Food at FAO: An Overview. Rome.

FAO. (2013). Good Agricultural Practices for greenhouse vegetable crops. Good Agricultural Practices for greenhouse vegetable crops. Rome.

FAO. (2014). Políticas Agroambientales en América Latina y el Caribe: Análisis de casos de Brasil, Chile, Colombia, México y Nicaragua. Santiago, Chile: FAO.

Fidaros, D. K., Baxevanou, C. A., Bartzanas, T., & Kittas, C. (2010). Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day. Renewable Energy, 35, 1380–1386. http://doi.org/10.1016/j.renene.2009.11.013

Fitz-Rodríguez, E., Kubota, C., Giacomelli, G. A., Tignor, M. E., Wilson, S. B., & Mcmahon, M. (2010). Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and Electronics in Agriculture, 70, 105–116. http://doi.org/10.1016/j.compag.2009.09.010

Jain, D., & Tiwari, G. N. (2002). Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Conversion and Management, 43, 2235–2250.

Jensen, M. H., & Malter, A. J. (1995). Protected Agriculture: A global review. Washington, D.C.: The World Bank.

Kimball, B. A. (1973). Simulation of the energy balance of a greenhouse. Agricultural Meteorology, 11, 243–260.

Kittas, C. Ã., & Bartzanas, T. (2007). Greenhouse microclimate and dehumidification effectiveness under different ventilator configurations, 42, 3774–3784. http://doi.org/10.1016/j.buildenv.2006.06.020

Kumari, N., Tiwari, G. N., & Sodha, M. S. (2007). Performance Evaluation of Greenhouse having Passive or Active Heating in Different Climatic Zones of India, IX, 1–19.

Mashonjowa, E., Ronsse, F., Milford, J. R., & Pieters, J. G. (2013). Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Solar Energy, 91, 381–393. http://doi.org/10.1016/j.solener.2012.09.010

Mistriotis, A., Arcidiacono, C., Picuno, P., Bot, G. P. A., & Scarascia-Mugnozza, G. (1997). Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds. Agricultural and Forest Meteorology, 88, 121–135.

Mistriotis, A., Bot, G. P. A., Picuno, P., & Scarascia-Mugnozza, G. (1997). Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology, 85, 217–228.

Mistriotis, A., & Castellano, S. (2012). Airflow through net covered tunnel structures at high wind speeds. Biosystems Engineering, 113(3), 308–317. http://doi.org/10.1016/j.biosystemseng.2012.08.002

Molina-Aiz, F. D., Valera, D. L., & Álvarez, A. J. (2004). Measurement and simulation of climate inside Almería greenhouses using computational fluid dynamics. Agricultural and Forest Meteorology, 125, 33–51. http://doi.org/10.1016/j.agrformet.2004.03.009

Nieves García, V., Van der Valk, O., & Elings, A. (2011). Mexican protected horticulture Production and market of Mexican protected horticulture described and analysed. Wageningen.

Nisen, A., Grafiadellis, M., Jiménez, R., La Malfa, G., Martínez-García, P. F., Monteiro, A., … Garnaud, J. C. (1988). Cultures protegees en climat mediterraneen. Rome.

Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Solar greenhouse an option for renewable and sustainable farming. Renewable and Sustainable Energy Reviews, 15, 3934–3945. http://doi.org/10.1016/j.rser.2011.07.030

Piscia, D., Montero, J. I., Bailey, B., & Mun, P. (2013). A new optimisation methodology used to study the effect of cover properties on night-time greenhouse climate. Biosystems Engineering, 116, 130–143. http://doi.org/10.1016/j.biosystemseng.2013.07.005

Rohli, R. V, & Vega, A. J. (2012). Climatology. Jones & Bartlett Learning.

Semple, Lucas, Carriveau, Rupp, Ting, D. (2017). Assessing heating and cooling demands of closed greenhouse systems in a cold climate. International Journal of Energy Research. http://doi.org/https://doi.org/10.1002/er.3752

Sethi, V. P. (2009). On the selection of shape and orientation of a greenhouse : Thermal modeling and experimental validation. Solar Energy, 83(1), 21–38. http://doi.org/10.1016/j.solener.2008.05.018

SMN-CONAGUA-CICESE. (2015). Climate Database of Northwestern Mexico. Retrieved from http://peac-bc.cicese.mx/datosclim/dcbc.php

Valera, D. L., Molina, F. D., & Álvarez, A. J. (2008). Ahorro y Eficiencia Energética en Invernaderos. Madrid: Instituto para la Diversificación y Ahorro de la Energía.

Wisconsin-Madison, U. of. (2010). TRNSYS 17. Multizone Building Modeling with Type 56 and TRNBuild. TRNSYS Documentation (Vol. 5).