Microestructura y propiedades mecánicas de soldaduras de acero inoxidable ferrítico 439 sin metal de aporte

Resumen

En la literatura sobre soldadura de acero inoxidable ferrítico ha sido reportado que una intensidad de corriente de soldadura menor a 120 A da lugar a una microestructura sin crecimiento de grano en la zona afectada térmicamente (ZAT). No obstante, en la literatura técnica existe muy poca información acerca de la reducción en las propiedades mecánicas de las uniones soldadas de acero AISI 439, usando el proceso de soldadura de arco con electrodo de tungsteno con corriente pulsada sin metal de aporte (P-GTAW, por sus siglas en inglés). En este trabajo, las microestructuras en la ZAT fueron analizadas y las propiedades mecánicas determinadas por ensayo mecánico a la tensión. Esto fue hecho en muestras cortadas para ensayo de las  uniones soldadas y ensayadas en una máquina de ensayos universal. Las superficies de fractura fueron observadas utilizando microscopia electrónica de barrido.

https://doi.org/10.15174/au.2019.2351
PDF
XML

Citas

Amuda, M. O. H., & Mridha, S. Grain refinement in ferritic stainless steel welds: the journey so far. In Advanced Materials Research , Vol. 83, 2010, p. 1165-1172.

Ramkumar, K. D., Chandrasekhar, A., Singh, A. K., Ahuja, S., Agarwal, A., Arivazhagan, N., & Rabel, A. M. Comparative studies on the weldability, microstructure and tensile properties of autogeneous TIG welded AISI 430 ferritic stainless steel with and without flux. Journal of Manufacturing Processes, 20, 2015, p. 54-69.

Amuda, M. O. H., & Akinlabi, E. T. Influences of Energy Input and Metal Powder Addition on Carbide Precipitation in AISI 430 Ferritic Stainless Steel Welds. Materials Today: Proceedings, 4(2), 2017, p 234-243.

Mohandas, T.; Reddy, G. M.; Naveed, M. A comparative evaluation of gas tungsten and shielded metal arc welds of a ferritic stainless steel, Journal of materials processing technology, 1999, vol.94, n.2: p.133-140.

Wright, R. N. Mechanical behavior and weldability of a high chromium ferritic stainless steel as a function of purity, Welding journal, vol.50, n.10, 1971: p.434-440.

Lakshminarayanan, A. K., & Balasubramanian, V. Evaluation of microstructure and mechanical properties of laser beam welded AISI 409M grade ferritic stainless steel. Journal of iron and steel research, international, 2012. p: 72-78.

Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V. Effect of autogenous arc welding processes on tensile and impact properties of ferritic stainless steel joints, journal of iron and steel research, international, vol.16, n.1, 2009: p.62-68.

Lakshminarayanan, A. K., Shanmugam, K., & Balasubramanian, V. Effect of welding processes on tensile and impact properties, hardness and microstructure of AISI 409M ferritic stainless joints fabricated by duplex stainless steel filler metal. Journal of Iron and Steel research, international, 16(5), 2009: p. 66-72.

Zhang, Z.; Wang, Z.; Wang, W.; Yan, Z.; Dong, P.; Du, H.; Ding, M. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel, Materials & Design, vol.68, 2015: p.114-120,.

Villafuerte, J. C.; Kerr, H. W.; David, S. A. Mechanisms of equiaxed grain formation in ferritic stainless steel gas tungsten arc welds, Materials Science and Engineering: A, vol.194, n.2, 1995: p.187-191,.

Amuda, M. O. H.; Mridha, S. Microstructural features of AISI 430 ferritic stainless steel (FSS) weld produced under varying process parameters, International Journal of Mechanical and Materials Engineering, vol.4, n.2, 2009: p.160-166.

Anttila, S.; Karjalainen, P.; Lantto, S. Mechanical properties of ferritic stainless steel welds in using type 409 and 430 filler metals, Welding in the World, vol.57, n.3, 2013: p. 335-347,.

Anttila, S.; Porter, D. A. Influence of shielding gases on grain refinement in welds of stabilized 21% Cr ferritic stainless steel. Welding in the World, vol.58, n.6, 2014: p. 805-817,

American Society of Testing Materials subcomitte E04.01, ASTM-E03-11: Standard Guide for Preparation of Metallographic Specimens, 2011: p.12.

American Society of Testing Materials subcomitte E028.04, ASTM-E8/E8M − 16a: Standard Test Methods for Tension Testing of Metallic Materials, 2016: p.29.

Sathish, R.; Naveen, B., Nijanthan, P.; Geethan, K. A. V.; Rao, V. S. Weldability and process parameter optimization of dissimilar pipe joints using GTAW, International Journal of Engineering research and applications, vol.2, n.3, 2012: p. 2525-2530.

Chandrakanth, B.; Abinesh, S. V.; Kumar, S. A.; Sathish, R. Optimization and non-destructive test analysis of SS316L weldments using GTAW, Materials Research, vol.17, n.1, 2014: p.190-195.

Russell, K. C. Precipitate coarsening and grain growth in steels. Massachusetts Institute of Technology, 77, 2003, p.1.

Teker, T. Effect of synergic controlled pulsed and manual gas metal ARC welding processes on mechanical and metallurgical properties of AISI 430 ferritic stainless steel, Archives of Metallurgy and Materials, vol.58, n.4, 2013: p.1029-1035.

ASTM International. ASTM designation: E112 – 13, Standard Test Methods for Determining Average Grain Size1. 3p.