Resumen
La adición de biosólidos a suelos agrícolas puede ayudar a mejorar la calidad de dichos suelos mediante un mayor almacenamiento de C y N. Se realizó un estudio para analizar el impacto a corto plazo de la adición de biosólidos en la liberación de nutrientes y la actividad microbiana en el suelo. Se evaluó el C de la biomasa microbiana (MB-C), la actividad ureasa (UA) y la mineralización de N y C a diferentes dosis de aplicación de biosólidos (0 mg, 100 mg y 200 mg de N-NH4+ kg-1). Además, se probó un tratamiento solo con biosólidos. Se observó un aumento en la mineralización de C y N, volatilización de NH3 y contenido de MB-C, conforme a la tasa de aplicación. La UA aumentó en promedio 100% en los primeros siete días de incubación para los tratamientos de biosólidos. Estos resultados sugieren una mejora en el contenido de nutrientes y una estimulación positiva de la actividad microbiana.
Citas
Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. Journal of soil science and plant nutrition, 17(3), 794-807. doi: 10.4067/S0718-95162017000300018
Alef K, Nanniperi P, 1995. Soil sampling, handling, storage and analysis. In: Methods in Applied Soil Microbiology and Biochemistry; Forter JC (ed.). pp. 60 – 61. Academic Press. London, England.
Alvarenga, P., Farto, M., Mourinha, C., & Palma, P. (2016). Beneficial use of dewatered and composted sewage sludge as soil amendments: behaviour of metals in soils and their uptake by plants. Waste and Biomass Valorization, 7(5), 1189-1201. doi: 10.1007/s12649-016-9519-z
Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil biology and biochemistry, 10(3), 215-221. doi: 10.1016/0038-0717(78)90099-8
Andreoli CV, Ferreira AC, Cherubini C, Rodrigues C, Carneiro C, Fernandes F, 2001. Capítulo 4 Higienização do lodo de esgoto. In: Resíduos sólidos do saneamento; processamento, reciclagem e disposição final. pp. 282. Abes y Prosab. Brasil.
Araújo, A. S. F., Lima, L. M., Santos, V. M., & Schmidt, R. (2016). Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms. Environmental Science and Pollution Research, 23(19), 19193-19200. doi: 10.1007/s11356-016-7115-1
Azeem, M., Hayat, R., Hussain, Q., Ahmed, M., Imran, M., & Crowley, D. E. (2016). Effect of biochar amendment on soil microbial biomass, abundance and enzyme activity in the mash bean field. Journal of Biodiversity and Environmental Sciences, 8, 2222-3045.
Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20(11), 8092-8131. doi: 10.1007/s11356-013-2051-9
Beltrán-Hernández, R. I., Luna-Guido, M. L., & Dendooven, L. (2007). Emission of carbon dioxide and dynamics of inorganic N in a gradient of alkaline saline soils of the former lake Texcoco. Applied soil ecology, 35(2), 390-403. doi: 10.1016/j.apsoil.2006.07.005
Bremner JM, 1996. Nitrogen—total. In: Methods of Soil Analysis: Chemical Methods Part 3; Sparks DL (ed.). pp.: 1085-1121. Soil Science Society of America: Madison, WI, USA.
Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., ... & Zoppini, A. (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58, 216-234. doi: 10.1016/j.soilbio.2012.11.009
Celis, J. E., Sandoval, M., Martínez, B., & Quezada, C. (2013). Effect of organic and mineral amendments upon soil respiration and microbial biomass in a saline-sodic soil. Ciencia e investigación Agraria, 40(3), 571-580. doi: 10.7764/rcia.v40i3.1167
Celis, J. H., Machuca, A. H., Sandoval, M. E., & Morales, P. C. (2011). Biological activity in a degraded alfisol amended with sewage sludge and cropped with yellow serradela (Ornithopus compressus L.). Chilean Journal of Agricultural Research, 71(1), 164. doi: 10.4067/S0718-58392011000100020
Chen, H., Li, D., Zhao, J., Xiao, K., & Wang, K. (2018). Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agriculture, Ecosystems & Environment, 252, 126-131. doi: 10.1016/j.agee.2017.09.032
Clarke, R. M., & Cummins, E. (2015). Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Human and Ecological Risk Assessment: An International Journal, 21(2), 492-513. doi: 10.1080/10807039.2014.930295
Curtin, D., Beare, M. H., Scott, C. L., Hernandez-Ramirez, G., & Meenken, E. D. (2014). Mineralization of soil carbon and nitrogen following physical disturbance: a laboratory assessment. Soil Science Society of America Journal, 78(3), 925-935. doi: 10.2136/sssaj2013.12.0510
de Melo, W. J., de Melo, G. M., de Melo, V. P., Donha, R. M., & Delarica, D. D. L. D. (2018). Nitrogen Dynamic in Agricultural Soils Amended With Sewage Sludge. In Soil Management and Climate Change (pp. 189-205). doi: 10.1016/B978-0-12-812128-3.00013-6
Diacono, M., & Montemurro, F. (2011). Long-term effects of organic amendments on soil fertility. Sustainable Agriculture Volume 2 (pp. 761-786). Springer, Dordrecht. doi: 10.1007/978-94-007-0394-0_34
Fernández-Luqueño, F., Cabrera-Lázaro, G., Corlay-Chee, L., López-Valdez, F., & Dendooven, L. (2017). Dissipation of Phenanthrene and Anthracene from Soil with Increasing Salt Content Amended with Wastewater Sludge. Polish Journal of Environmental Studies, 26(1). doi: 10.15244/pjoes/64929
Fernández-Luqueño, F., Mendoza-Cristino, R., & Dendooven, L. (2016). Do Application Rates of Wastewater Sewage Sludge Affect the Removal of PAHs from Alkaline Saline Soil?. Polish Journal of Environmental Studies, 25(6). doi: 10.15244/pjoes/63852
Gee G.W. y Bauder J.W. (1986). Particle size analysis In: Methods of Soil Analysis: Part 1 – Physical and Mineralogical Methods, (A. Klute, Ed.), Soil Science Society of America, Madison, WI, USA, pp. 383–411. doi: 10.2136/sssabookser5.1.2ed.c15
Guerra, P. J., Luna, M. L., & Hernández, R. B. (2004). Aprovechamiento de biosólidos como abonos orgánicos en pastizales áridos y semiáridos. Revista Mexicana de Ciencias Pecuarias, 42(3), 379-395.
Gutiérrez–Avedoy VJ, Ramírez–Hernández IF, Encarnación–Aguilar G, Medina–Arévalo A, 2012. Diagnóstico básico para la gestión integral de los residuos. Instituto Nacional de Ecología y Cambio Climático (INECC) y Centro Nacional de Investigación y Capacitación Ambiental. México. p. 21
Harrison-Kirk, T., Beare, M. H., Meenken, E. D., & Condron, L. M. (2014). Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation. Soil Biology and Biochemistry, 74, 50-60. doi: 10.1016/j.soilbio.2014.02.021
Heil, J., Vereecken, H., & Brüggemann, N. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science, 67(1), 23-39. doi: 10.1111/ejss.12306
Jin, V. L., Johnson, M. V. V., Haney, R. L., & Arnold, J. G. (2011). Potential carbon and nitrogen mineralization in soils from a perennial forage production system amended with class B biosolids. Agriculture, ecosystems & environment, 141(3-4), 461-465. doi: 10.1016/j.agee.2011.03.016
Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and fertility of Soils, 6(1), 68-72. doi: 10.1007/BF00257924
Keeney DR, Nelson DW, 1982. Nitrogen—Inorganic Forms. In: Methods of soil analysis. Part 2. Chemical and microbiological properties; Page AL, Miller RH, Keeney DR (eds.). pp. 643-698. Agronomy, Madison, WI, USA.
Lloret, E., Pascual, J. A., Brodie, E. L., Bouskill, N. J., Insam, H., Juárez, M. F. D., & Goberna, M. (2016). Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Applied soil ecology, 101, 37-46. doi: 10.1016/j.apsoil.2016.01.002
López-Valdez, F., Fernández-Luqueño, F., Luna-Guido, M. L., Marsch, R., Olalde-Portugal, V., & Dendooven, L. (2010). Microorganisms in sewage sludge added to an extreme alkaline saline soil affect carbon and nitrogen dynamics. Applied soil ecology, 45(3), 225-231. doi: 10.1016/j.apsoil.2010.04.009
Nannipieri, P., Pedrazzini, F., Arcara, P. G., & Piovanelli, C. (1979). Changes in amino acids, enzyme activities, and biomasses during soil microbial growth. Soil Science, 127(1), 26-34. doi: 10.1097/00010694-197901000-00004
Núñez Ramos, P. A., Jara Castillo, A. A., Sandoval Sandoval, Y., Demanet, R., & Mora, M. D. L. L. (2012). Biomasa microbiana y actividad ureasa del suelo en una pradera permanente pastoreada de Chile. Ciencia del suelo, 30(2), 187-199.
Pajares, S., & Bohannan, B. J. (2016). Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in microbiology, 7, 1045. doi: 10.3389/fmicb.2016.01045
Peng, X., Maharjan, B., Yu, C., Su, A., Jin, V., & Ferguson, R. B. (2015). A laboratory evaluation of ammonia volatilization and nitrate leaching following nitrogen fertilizer application on a coarse-textured soil. Agronomy Journal, 107(3), 871-879. doi: 10.2134/agronj14.0537
Redmile-Gordon, M. A., Evershed, R. P., Hirsch, P. R., White, R. P., & Goulding, K. W. T. (2015). Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biology and Biochemistry, 88, 257-267. doi: 10.1016/j.soilbio.2015.05.025
Rhoades, J.D. (1996). Salinity: electrical conductivity and total dissolved salts. In: Methods of Soil Analysis, Part 3 – Chemical Methods (D.L. Sparks, Ed.). Soil Science Society of America, Madison, WI, USA, pp. 417–435. doi: 10.2136/sssabookser5.3.c14
Rigby, H., & Smith, S. R. (2014). The nitrogen fertiliser value and other agronomic benefits of industrial biowastes. Nutrient cycling in agroecosystems, 98(2), 137-154. doi: 10.1007/s10705-014-9602-4
Rigby, H., Clarke, B. O., Pritchard, D. L., Meehan, B., Beshah, F., Smith, S. R., & Porter, N. A. (2016). A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of the Total Environment, 541, 1310-1338. doi: 10.1016/j.scitotenv.2015.08.089
Roig, N., Sierra, J., Martí, E., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2012). Long-term amendment of Spanish soils with sewage sludge: effects on soil functioning. Agriculture, ecosystems & environment, 158, 41-48. doi: 10.1016/j.agee.2012.05.016
Rojas-Oropeza, M., Dendooven, L., Garza-Avendano, L., Souza, V., Philippot, L., & Cabirol, N. (2010). Effects of biosolids application on nitrogen dynamics and microbial structure in a saline–sodic soil of the former Lake Texcoco (Mexico). Bioresource technology, 101(7), 2491-2498. doi: 10.1016/j.biortech.2009.10.088
Sciubba, L., Cavani, L., Marzadori, C., & Ciavatta, C. (2013). Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality. Biology and fertility of soils, 49(5), 597-608. doi: 10.1007/s00374-012-0748-4
Sciubba, L., Cavani, L., Negroni, A., Zanaroli, G., Fava, F., Ciavatta, C., & Marzadori, C. (2014). Changes in the functional properties of a sandy loam soil amended with biosolids at different application rates. Geoderma, 221, 40-49. doi: 10.1016/j.geoderma.2014.01.018
SEMARNAT, 2002. Norma Oficial Mexicana (NOM–004–SEMARNAT–2002). Protección ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. Secretaría del Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, México.
SEMARNAT, 2014. Programa Estatal para la Prevención y Gestión Integral de Residuos del estado de Guanajuato. Universidad Nacional Autónoma de México. México. 53-54 p.
Sharma, B., Sarkar, A., Singh, P., & Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 64, 117-132. doi: 10.1016/j.wasman.2017.03.002
Singh, R. P., Sarkar, A., Sengupta, C., Singh, P., Miranda, A. R. L., Nunes, L. A. P. L., ... & de Melo, W. J. (2015). Effect of utilization of organic waste as agricultural amendment on soil microbial biomass. Annual Research & Review in Biology, 7(3).
Tabatabai, M. A. (1994). Soil enzymes. In ‘Methods of soil analysis. Part 2: Microbiological and biochemical properties’.(Eds RW Weaver.) pp. 775–833. Soil Science Society of America: Madison, WI, USA.
Thomas G.W. (1996). Soil pH and soil acidity. In: Methods of Soil Analysis, Part 3 – Chemical Methods (D.L. Sparks, Ed.). Soil Science Society of America, Madison, WI, USA, pp. 475–490. DOI: 10.2136/sssabookser5.3.c16
Víctor-Tamaríz, J., Castelán-Vega, R., & Cruz-Montalvo, A. (2015). Effect of biosolids on the physicochemical properties of an inceptisol of the municipality of puebla, mexico. Revista AIDIS de Ingeniería y Ciencias Ambientales: investigación, desarrollo y práctica, 8(3), 248-256.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. doi: 10.1097/00010694-193401000-00003
Xue, J., Kimberley, M. O., Ross, C., Gielen, G., Tremblay, L. A., Champeau, O., ... & Wang, H. (2015). Ecological impacts of long-term application of biosolids to a radiata pine plantation. Science of the Total Environment, 530, 233-240. doi: 10.1016/j.scitotenv.2015.05.096