Publicado 2023-02-22
Cómo citar
Resumen
El objetivo del estudio fue evaluar el valor nutricional de dietas de Panicum maximum suplementadas con 30% de follajes arbóreos mezclados con yuca (Manihot esculenta). Se compararon seis tratamientos: T0 (P. maximum), T1 (Leucaena leucocephala), T2 (Moringa oleifera), T3 (Tithonia diversifolia), T4 (Guazuma ulmifolia) y T5 (Hibiscus rosa-sinensis). Se determinó la composición química, fermentación y digestibilidad in vitro, así como la producción de ácidos grasos volátiles (AGV). Los datos se analizaron con un análisis de varianza. La proteína cruda fluctuó de 8.34% a 11.70%, y la fermentación y la digestibilidad de la materia seca aumentaron (hasta 38.23% y 18.23%, respectivamente) (p < 0.05) con T5, T2, T1 y T3. Además, T5 y T2 incrementaron (p < 0.001) el ácido propiónico, mientras que T1 y T3 incrementaron el ácido butírico. Se concluye que la adición de H. rosa-sinensis, M. oleífera, L. leucocephala y T. diversifolia mejoran el perfil de AGV, fermentación y digestibilidad de la dieta.
Citas
- Abdel-Raheem, S. M., & Hassan, E. H. (2021). Effects of dietary inclusion of Moringa oleifera leaf meal on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Saudi Journal of Biological Sciences, 28(8), 4430-4436. doi: https://doi.org/10.1016/j.sjbs.2021.04.037
- Albores-Moreno, S., Alayón-Gamboa, J. A., Miranda-Romero, L. A., Alarcón-Zúñiga, B., Jiménez-Ferrer, G., Ku-Vera, J. C., & Piñeiro-Vázquez, A. T. (2020a). Effect of supplementation with tree foliage on in vitro digestibility and fermentation, synthesis of microbial biomass and methane production of cattle diets. Agroforestry Systems, 94(5),1469–1480. doi: https://doi.org/10.1007/s10457-019-00416-1
- Albores-Moreno, S., Alayón-Gamboa, J. A., Morón-Ríos, A., Ortiz-Colin, P. N., Ventura-Cordero, J., González-Pech, P. G., & Piñeiro-Vázquez, A. T. (2020b). Influence of the composition and diversity of tree fodder grazed on the selection and voluntary intake by cattle in a tropical forest. Agroforestry Systems, 94, 1651–1664. doi: https://doi.org/10.1007/s10457-020-00483-9
- Albores-Moreno, S., Alayón-Gamboa, J. A., Miranda-Romero, L. A., Alarcón-Zúñiga, B., Jiménez-Ferrer, G., Ku-Vera, J. C., & Piñeiro-Vázquez, A. T. (2019). Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Tropical Animal Health and Production, 51(2), 893–904. doi: https://doi.org/10.1007/s11250-018-1772-7
- Albores-Moreno, S., Alayón-Gamboa, J. A., Miranda-Romero, L. A., Jiménez-Ferrer, G., Ku-Vera, J. C., & Vargas-Villamil, L. (2018). Nutritional composition, in vitro degradation and potential fermentation of tree species grazed by ruminants in secondary vegetation (acahual) of deciduous forest. Journal of Animal & Plant Science, 28(5), 1263–1275.
- Arjona-Alcocer V. A., Aguilar-Pérez C. F., Ku-Vera J. C., Ramírez-Avilés, L., & Solorio-Sánchez, F. J. (2020). Influence of energy supplementation on dietary nitrogen utilization and milk production in cows fed foliage of Leucaena leucocephala. Tropical Animal Health and Production, 52(5), 2319–2325. doi: https://doi.org/10.1007/s11250-020-02254-1
- Ashfod, D., Lara-Lara, P. E., Aguilar-Urquizo, E., Cen-Chuc, F. E., Ku-Vera, J. C., & Sanginés-García, J. R. (2016). Digestibilidad in vivo y balance de nitrógeno en dietas para ovinos con follaje de árboles forrajeros en sustitución de harina de soya. Agroforestry Systems, 91(6), 1079–1085. doi: https://doi.org/10.1007/s10457-016-9982-3
- Association of Official Analytical Chemists (AOAC). (1990). Official methods of analysis (15a ed). AOAC International.
- Aye, P. A. (2016). Comparative nutritive value of Moringa oleifera, Thitonia diversifolia and Gmelina arborea leaf meals. American Journal of Food and Nutrition, 6(1), 23-32. doi: https://doi.org/10.5251/ajfn.2016.6.1.23.32
- Barros-Rodríguez, M., Oña-Rodríguez, J., Mera-Andrade, R., Artieda-Rojas, J., Curay-Quispe, S., Avilés-Esquivel, D., Solorio-Sánchez, J., & Guishca-Cunuhay, C. (2017). Degradación ruminal de dietas a base de biomasa pos-cosecha de Amaranthus cruentus: efecto sobre los protozoos del rumen y producción de gas in vitro. Revista de Investigación Veterinarias del Perú, 28(4), 812–821. doi: https://dx.doi.org/10.15381/rivep.v28i4.13931
- Bryant, P. J., Reichardt, B. P., Clausen, P. T., Provenza, D. F., & Kuropat, J. P. (1992). Woody plant-mammal interactions. En A. G., Rosenthal & R. M., Berenbaum (eds.), Herbivores. Their interactions with secondary plant metabolites (pp. 344-365). Academic Press Inc.
- Castro-González, A., Alayón-Gamboa, J. A., Ayala-Burgos, A., & Ramírez-Avilés, L. (2008). Effects of Brosimum alicastrum and Lysiloma latisiliquum mixtures on voluntary intake, nutrient digestibility and nitrogen balance in sheep fed tropical pastures. Animal Feed Science and Technology, 141(3-4), 246–258. doi: https://doi.org/10.1016/j.anifeedsci.2007.06.033
- Cochran, W. G., & Cox, G. M. (1991). Diseños experimentales (2a ed.). Trillas.
- Corbett, J. L., & Freer, M. (1995). Ingestion et digestion chez les ruminant’s au pâturage. En R., Jarrige, Y., Ruckbusch, C., Demarquily, M. H., Farce, & M., Journet, M. (eds.) Nutrition des ruminants domestiques (pp. 871–900). INRA.
- Cruz-Hernández, A., Hernández-Sánchez, D., Gómez-Vázquez, A., Govea-Luciano, A., Pinos-Rodríguez, J. M., Álvarez-González, C. A., Chay-Canul, A., Córdoba-Izquierdo, A., & Brito-Vega, H. (2019). Tannin concentration and degradation rate in vitro of Morus alba and Hibiscus rosa-sinensis. Acta Universitaria, 29, e2197, 1–6. doi: https://doi.org/10.15174/au.2019.2197
- De Oliveira, M., Detmann, E., De Campos, S., Darlisson, E., De Almeida, L. M., Medrado, M., & Ribeiro, A. (2017). Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch. Asian-Australasian Journal of Animal Science, 30(6),797–803. doi: https://doi.org/10.5713/ajas.16.0629
- Elghandour, M. M. Y., Vázquez, J. C., Salem, A. Z. M., Kholif, A. E., Cipriano, M. M., Camacho, L. M., & Márquez, O. (2017). In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. Journal of Applied Animal Research, 45(1), 389–395. doi: https://doi.org/10.1080/09712119.2016.1204304
- Elmasry, A. M. A., Mendoza, G. D., Miranda, L. A., Vázquez, G., Salem, A. Z. M., & Hernández, P. A. (2016). Effects of types and doses of yeast on gas production and in vitro digestibility of diets containing maize (Zea mays) and lucerne (Medicago sativa) or oat hay. South African Journal of Animal Science, 46(4), 391–397. doi: https://doi.org/10.4314/sajas.v46i4.7
- Food and Agriculture Organization (FAO). (2018). Livestock environmental assessment and performance partnership. FAO.
- Galindo-Blanco, J. L., Rodríguez-García, I., González-Ibarra, N., García-López, R., & Herrera-Villafranca, M., (2018). Sistema silvopastoril con Tithonia diversifolia (Hemsl.) A. Gray: efecto en la población microbiana ruminal de vacas. Revista Pastos y Forrajes, 41(4), 273–280. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942018000400006
- García, E. (1973). Modificación al sistema climático de Köppen. UNAM.
- García, E. M., Fernández, I., & Fuentes, A. (2015). Determinación de polifenoles totales por el método de Folin-Ciocalteu. Universidad Politécnica de Valencia. https://hdl.handle.net/10251/52056
- Giuburuncă, M., Criste, A., Cocan, D., Constantinescu, R., Răducu, C., & Mireșan, V. (2014). Effects of plant secondary metabolites on methane production and fermentation parameters in vitro ruminal cultures. Journal of Animal Science and Biotechnologies, 47(2), 78–82.
- Guo, Y. Q., Liu, J., Lu, Y., Zhu, W. Y., Denman, S. E., & McSweeney, C. S. (2008). Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro‐organisms. Letters in Applied Microbiology, 47(5), 421–426. doi: https://doi.org/10.1111/j.1472-765X.2008.02459.x
- Hartmann, T. (2007). From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry, 68(22–24), 2831–2846. doi: https://doi.org/10.1016/j.phytochem.2007.09.017
- Hernández-Morales, J., Sánchez-Santillán, P., Torres-Salado, N., Herrera-Pérez, J., Rojas-García, A. R., Reyes-Vázquez, I., & Mendoza-Núñez, M. A. (2018). Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Revista Mexicana de Ciencias Pecuarias, 9(1), 105–120. doi: https://dx.doi.org/ 10.22319/rmcp.v9i1.4332
- Holguín, V.A., Cuchillo-Hilario, M., Mazabel, J., Quintero, S., & Mora-Delgado, J. (2020). Efecto de la mezcla ensilada de Pennisetum purpureum y Tithonia diversifolia sobre la fermentación ruminal in vitro y su emisión de metano en el sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias, 11(1), 19–37. doi: https://doi.org/10.22319/rmcp.v11i1.4740
- International Standard Organization (ISO). (1988). Animal feeding stuffs, animal products, and faeces or urine – Determination of gross calorific value bomb calorimeter method. ISO.
- Jiménez-Guillén, R., Noriega, D. H., Rojas-Hernández, S., Olivares, J., Villa-Mancera, A., Olmedo-Juárez, A., Paredes-Díaz, D., & Hernández-Hernández, H. (2020). Chemical composition and ruminal digestion of corn silage with Morus alba L. foliage. Ecosistemas y Recursos Agropecuarios, 7(1), e2228. doi: https://doi.org/10.19136/era.a7n1.2228
- Jiménez, A., Jiménez, G., Alayón-Gamboa, J. A., Pérez-Luna, E. J., Piñeiro-Vázquez, A. T., Albores-Moreno, S., Pérez-Escobar, M. G., & Castro-Chan, R. (2019). Quantifying ruminal fermentation and methane production using the in vitro gas technique in the forages of a sheep silvopastoral system in Chiapas, Mexico. Revista Mexicana de Ciencias Pecuarias, 10(2), 298–314. doi: https://doi.org/10.22319/rmcp.v10i2.4529
- Krishnamoorthy, U., Rymer, C., & Robinson, P. H. (2005). The in vitro gas production technique: limitations and opportunities. Animal Feed Science and Technology, 123–124 (1), 1–7. doi: https://doi.org/10.1016/j.anifeedsci.2005.04.015
- Ku-Vera, J. C, Castelán-Ortega, O. A., Galindo-Maldonado, F. A., Arango, J., Chirinda, N., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Flores, E. J., Montoya-Flores, M. D., Molina-Botero, I. C., Piñeiro-Vázquez, A. T., Arceo-Castillo, J. I., Aguilar-Pérez, C. F., Ramírez-Avilés, L., & Solorio-Sánchez, F. J. (2020a). Review: Strategies for enteric methane mitigation in cattle fed tropical forages. Animal, 14(3), 453–463. doi: https://doi.org/10.1017/S1751731120001780
- Ku-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Gómez-Bravo, C. A., Aguilar-Pérez, C. F., & Solorio-Sánchez, F. J. (2020b). Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 584(7), 1–14. doi: https://doi.org/10.3389/fvets.2020.00584
- Luna, M. A. A. (2021). Digestibilidad in vitro de dietas para ovinos de engorda suplementadas con follaje de Thitonia diversifolia (Tesis Maestría). Tecnológico Nacional de México, Instituto Tecnológico de Tizimín.
- Mauricio, R. M., Ribeiro, R. S., Silveira, S. R., Silva, P. L., Calsavara, L., Pereira, L. G. R., & Paciullo, D. S. C. (2014). Thitonia diversifolia for ruminant nutrition. Tropical Grasslands - Forrajes Tropicales, 2, 82–84. doi: https://doi.org/10.17138/TGFT(2)82-84
- Meale, S. J., Chaves, A. V., Baah, J., & McAllister, T. A. (2012). Methane production of different forages in vitro ruminal fermentation. Asian-Australasian Journal of Animal Science, 25(1), 86–91. doi: https://doi.org/10.5713/ajas.2011.11249
- Menke, K., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28(4), 7–55. https://www.scienceopen.com/document?vid=e1859372-e696-424a-85fb-d305b0b594bc
- Miranda, R. L. A., Vázquez, M. P., Améndola, M. R., Sandoval, G. L., & González, O. R. (2015). Cuantificación de las fracciones fermentables de alfalfa y tuna por la técnica de producción de gas. Asociación Latinoamericana de Producción Animal, XXIV Congreso de la asociación Latinoamericana de producción animal y XL Congreso de la sociedad chilena de producción animal 2015. Puerto Varas, Chile.
- Modeste, K. K., Adolphe, M., Boni, N., Edmond, K., & Camille. K. (2018). Status of Cassava (Manihot Esculenta Crantz) in Côte d’Ivoire: from production to consumption and evaluation of technology adoption. European Scientific Journal, 14(9), 285. doi: https://doi.org/10.19044/esj.2018.v14n9p285
- Molina-Botero, I. C., Mazabel, J., Arceo-Castillo, J., Urrea-Benítez, J. L., Olivera-Castillo, L., Barahona-Rosales, R., Chirinda, N., Ku-Vera, J., & Arango, J. (2020). Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Tropical Animal Health and Production, 52(4), 2787-2798. doi: https://doi.org/10.1007/s11250-020-02324-4
- Monforte-Briceño, G. E., Sandoval-Castro, C. A., Ramírez-Avilés, L., & Capetillo, C. M. (2005). Defaunation capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Animal Feed Science and Technology, 123, 313–327. doi: https://doi.org/10.1016/j.anifeedsci.2005.04.016
- National Research Council (NRC). (2016). Committee on nutrient requirements of beef cattle, (8a ed.). National Academy Press.
- Patra, A., Park, T., Kim, M., & Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8(1), 1-18. doi: https://doi.org/10.1186/s40104-017-0145-9
- Pell, A. N., & Schofield, P. (1993). Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science, 76(4), 1063–1073. doi: https://doi.org/10.3168/jds.S0022-0302(93)77435-4
- Pérez-Can, G. E., Tzec-Gamboa, M., Albores-Moreno, S., Sanginés-García, J., Aguilar-Urquizo, E., Chay-Canul, A., Canul-Solis, J., Muñoz-Gonzalez, J., Díaz-Echeverria, V., & Piñeiro-Vázquez, A. T. (2020). Degradabilidad y producción de metano in vitro del follaje de árboles y arbustos con potencial en la nutrición de rumiantes. Acta Universitaria, 30, e2840, 1-13. doi: https://doi.org/10.15174/au.2020.2840
- Pinzón, G., Aranda-Ibáñez, E. M., Pérez, J., Hernández, A., Da Silva, I. C., & Vitti, A. (2011). Rumen characteristics of young bulls fed diets based on grass and commercial concentrate supplemented with Hibiscus rosa-sinensis and Saccharin. Ciencia Animal Brasileña, 12(1), 26–36. doi: https://doi.org/10.5216/cab.v12i1.4878
- Piñeiro-Vázquez, A., Canul, J. R., Casanova, F., Chay-Canul, A. J., Ayala-Burgos, A. J., Solorio-Sánchez, F. J., Aguilar-Pérez, C. F., & Ku-Vera, J. C. (2017). Enteric methane emission in sheep fed Pennisetum purpureum and tropical trees containing condensed tannins. Revista Mexicana de Ciencias Pecuarias, 8(2),111–119. doi: https://dx.doi.org/10.22319/rmcp.v8i2.4401
- Ramos-Morales, E., Arco-Pérez, A., Martín-García, A. I., Yáñez-Ruiz, D. R., Frutos, P., & Hervás, G. (2014). Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Animal Feed Science and Technology, 198(12), 57–66. doi: https://doi.org/10.1016/j.anifeedsci.2014.09.016
- Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science, 73(5), 1516–1528. doi: https://doi.org/10.2527/1995.7351516x
- Rodríguez-Villanueva, H., Puch-Rodríguez, J., Muñoz-González, J., Sanginés-García, J., Aguilar-Urquizo, E., Chay-Canul, A., Casanova-Lugo, F., Jimenez-Ferrer, G., Alayón-Gamboa, J., & Piñeiro-Vázquez, A. (2019). Intake, digestibility, and nitrogen balance in hair sheep fed Pennisetum purpureum supplemented with tropical tree foliage. Agroforestry Systems, 94(3), 665–674. doi: https://doi.org/10.1007/s10457-019-00439-8
- Rosales, M., & Rios, C. I. (1999). Avances en la investigación en la variación del valor nutricional de procedencias de Trichanthera gigantea. En M. D., Sánchez & M. R., Méndez (eds.), Agroforestería para la producción animal en América Latina (pp. 351-362). FAO.
- Ryan, R. K. (1964). Concentrations of glucose and low-molecular-weight acids in the rumen of sheep changed gradually from a hay to a hay-plus-grain diet. American Journal of Veterinary Research, 25, 646-652. https://pubmed.ncbi.nlm.nih.gov/14141503/
- Sánchez, M. D. (2002). Mulberry for animal production. FAO.
- Statistical Analysis System (SAS). (2014). The SAS system for Windows. USA: SAS Institute Inc.
- Terrill, T. H., Rowan, A. M., Douglas, G. B., & Barry, T. N. (1992). Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture, 58(3), 321–329. doi: https://doi.org/10.1002/jsfa.2740580306
- Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3-4),185–197. doi: https://doi.org/10.1016/0377-8401(94)90171-6
- Ungerfeld, E. M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Frontiers in Microbiology, 37(6),1–17. doi: https://doi.org/10.3389/fmicb.2015.00037
- Unión Internacional de Ciencias del Suelo (UICS). (2007). Base referencial mundial del recurso suelo. FAO.
- Valencia-Salazar, S. S., Jiménez-Ferrer, G., Arango, J., Molina-Botero, I., Chirinda, N., Piñeiro-Vázquez, A., Jiménez-Ocampo, R., Nahed-Toral, J., & Ku-Vera, J. (2021). Enteric methane mitigation and fermentation kinetics of forage species from Southern Mexico: in vitro screening. Agroforestry Systems, 95(2), 293–305. doi: https://doi.org/10.1007/s10457-020-00585-4
- Van Soest, P. J. (1965). Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. Journal of Animal Science, 24(3), 834–843. doi: https://doi.org/10.2527/jas1965.243834x
- Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal Dairy Science, 74(10), 3583–3597. doi: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Vargas, J., Pabón, M., & Carulla, J. (2014). Producción de metano in vitro en mezcla de gramíneas-leguminosas del trópico alto colombiano. Archivos de Zootecnia, 63(243), 397–407. doi: https://dx.doi.org/10.4321/S0004-05922014000300001
- Yam-Chale, E., Díaz-Echeverría, V., Chavarría-Díaz, A., Oros-Ortega, I., Chay-Canul, A., Cen-Hoy, A., & Casanova, F. (2018). Forage and tuber yield and nutritional composition of Manihot esculenta Crantz meal with organic fertilization. Ecosistemas y Recursos Agropecuarios, 5(13), 127-132. doi: https://doi.org/10.19136/era.a5n13.1263
- Yuliana, P., Laconi, E. B., Jayanegara, A., Achmadi, S. S., & Samsudin, A. A., (2019). Effect of napier grass supplemented with Gliricidia sepium, Sapindus rarak or Hibiscus rosa-sinensis on in vitro rumen fermentation profiles and methanogenesis. Journal of the Indonesian Tropical Animal Agriculture, 44(2), 167–176. doi: https://doi.org/10.14710/jitaa.44.2.167-176