Una solución aproximada y analítica del flujo magnetohidrodinámico de la sangre en un canal poroso
PDF (English)

Cómo citar

Filobello-Nino, U., Vazquez-Leal, H., Huerta-Chua, J., Callejas-Molina, R. A., Trigos, Ángel, & Salinas-Castro, A. (2024). Una solución aproximada y analítica del flujo magnetohidrodinámico de la sangre en un canal poroso. Acta Universitaria, 34, 1–14. https://doi.org/10.15174/au.2024.3779

Resumen

Este trabajo presenta una versión nueva del método de Picard, conocido como método de Picard para problemas de valores en la frontera (BVPP, por sus siglas en inglés), para obtener una solución analítica aproximada para la ecuación diferencial no lineal difícil de resolver que modela el flujo magnetohidrodinámico de la sangre a través de un canal poroso. El método propuesto es versátil y puede proporcionar expresiones analíticas compactas, fáciles de evaluar, que describen con precisión los fenómenos científicos estudiados, haciendo a BVPP un método ideal para usarse en aplicaciones prácticas. BVPP transforma una ecuación diferencial en una ecuación integral y utiliza un algoritmo iterativo, tal como en el método de Picard básico; sin embargo, a diferencia del método básico, BVPP permite la elección de una función inicial apropiada provista de varios parámetros de ajuste que se optimizan para obtener una solución analítica aproximada y precisa con un esfuerzo mínimo. En términos generales, BVPP representa un avance significativo en el análisis de ecuaciones diferenciales difíciles de resolver, particularmente en el campo de la ingeniería biomédica.

https://doi.org/10.15174/au.2024.3779
PDF (English)

Citas

Adamu, M., & Ogenyi, P. (2017). Parameterized homotopy perturbation method. Nonlinear Sci Lett A, 8(2), 240–243. https://www.researchgate.net/publication/312449676_Parameterized_homotopy_perturbation_method

Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9

Assas, L. M. B. (2007). Approximate solutions for the generalized KdV–Burgers' equation by He's variational iteration method. Physica Scripta, 76(2), 161–164. https://doi.org/10.1088/0031-8949/76/2/008

Babolian, E., & Biazar, J. (2002). On the order of convergence of Adomian method. Applied Mathematics and Computation, 130(2), 383–387. https://doi.org/10.1016/S0096-3003(01)00103-5

Beléndez, A., Pascual, C., Álvarez, M. L., Méndez, D. I., Yebra, M. S., & Hernández, A. (2008). Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method. Physica Scripta, 79(1), 015009. https://doi.org/10.1088/0031-8949/79/01/015009

Boyce, W. E., & DiPrima, R. C. (2012). Elementary differential equations and boundary value problems. John Wiley & Sons.

Diaz-Arango, G., Vázquez-Leal, H., Hernandez-Martinez, L., Sanz, M. T. S., and Sandoval-Hernandez, M. (2018). Homotopy path planning for terrestrial robots using spherical algorithm. IEEE Transactions on Automation Science and Engineering, 15(2), 567–585. https://doi.org/10.1109/TASE.2016.2638208

El-Dib, Y. O. (2017). Multiple scales homotopy perturbation method for nonlinear oscillators. Non­linear Sci. Lett. A, 8(4), 352–364. https://www.researchgate.net/publication/318432572_Multiple_scales_homotopy_perturbation_method_for_nonlinear_oscillators

El-Dib, Y. O., & Moatimid, G. M. (2018). On the coupling of the homotopy perturbation and Frobenius method for exact solutions of singular nonlinear differential equations. Nonlinear Sci. Lett. A, 9(3), 220–230. https://www.researchgate.net/publication/

_On_the_coupling_of_the_homotopy_perturbation_and_Frobenius_method_for_exact_solutions_of_singular_nonlinear_differential_equations

Elsgolts, L. (1977). Differential equations and the calculus of variations. Mir Publishers. https://ia600908.us.archive.org/2/items/ElsgoltsDifferentialEquationsAndTheCalculusOfVariations/Elsgolts-Differential-Equations-and-the-Calculus-of-Variations.pdf

Evans, D. J., & Raslan, K. R. (2005). The Tanh function method for solving some important non­linear partial differential equations. International Journal of Computer Mathematics, 82(7), 897–905. https://doi.org/10.1080/00207160412331336026

Filobello-Nino, U., Vazquez-Leal, H., Sarmiento-Reyes, A., Perez-Sesma, A., Hernandez-Martinez, L., Herrera-May, A., Jimenez-Fernandez, V. M., Marin-Hernandez, A., Pereyra-Diaz, D., & Diaz-Sanchez, A. (2013). The study of heat transfer phenomena using pm for approximate solution with Dirichlet and mixed boundary conditions. Applied and Computational Mathematics, 2(6), 143-148. https://doi.org/10.11648/j.acm.20130206.16

Filobello-Nino, U., Vazquez-Leal, H., Perez-Sesma, A., Cervantes-Perez, J., Hernandez-Martinez, L., Herrera-May, A., Jimenez-Fernandez, V. M., Marin-Hernandez, A., Hoyos-Reyes, C., Diaz-Sanchez, A., & Huerta-Chua, J. (2016a). On a practical methodology for optimization of the trial function in order to solve BVP problems by using a modified version of Picard method. Applied Mathematics & Information Sciences, 10(4), 1355–1367. https://doi.org/10.18576/amis/100414

Filobello-Nino, U., Vazquez-Leal, H., Rashidi, M. M., Sedighi, H. M., Perez-Sesma, A., Sandoval-Hernandez, M., Sarmiento-Reyes, A., Contreras-Hernandez, A. D., Pereyra-Diaz, D., Hoyos-Reyes, C., Jimenez-Fernandez, V. M., Huerta-Chua, J., Castro-Gonzalez, F., & Laguna-Camacho, J. R. (2016b). Laplace transform homotopy perturbation method for the approximation of variational problems. SpringerPlus, 5, 276. https://doi.org/10.1186/s40064-016-1755-y

Filobello-Nino, U., Vazquez-Leal, H., Herrera-May, A., Ambrosio-Lazaro, R., Castaneda-Sheissa, R., Jimenez-Fernandez, V., Sandoval-Hernandez, M., & Contreras-Hernandez, A. (2020). A handy, accurate, invertible and integrable expression for Dawson’s function. Acta universitaria, 29, e2124. https://doi.org/10.15174/au.2019.2124

Fukada, E., & Kaibara, M. (1980). Viscoelastic study of aggregation of red blood cells. Biorheology, 17(1-2), 177–182. https://doi.org/10.3233/bir-1980-171-219

Fung, Y. C., & Sobin, S. S. (1969). Theory of sheet flow in lung alveoli. Journal of Applied Physiology, 26(4), 472–488. https://doi.org/10.1152/jappl.1969.26.4.472

Fung, Y. C., & Tang, H. T. (1975). Solute distribution in the flow in a channel bounded by porous layers: a model of the lung. Journal of Applied Mechanics, 42(3), 531–535. https://doi.org/10.1115/1.3423636

He, J. H. (2000). A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35(1), 37–43. https://doi.org/10.1016/S0020-7462(98)00085-7

He, J. H. (2006). Homotopy perturbation method for solving boundary value problems. Physics Letters A, 350(1-2), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005

He, J. H. (2008). Recent development of the homotopy perturbation method. Topological Methods in Nonlinear Analysis, 31(2), 205–209. https://apcz.umk.pl/TMNA/article/view/TMNA.2008.011

He, J. H., & Wu, X. H. (2007). Variational iteration method: new development and applications. Computers & Mathematics with Applications, 54(7-8), 881–894. https://doi.org/10.1016/j.camwa.2006.12.083

Holmes, M. (2013). Introduction to perturbation methods (2nd ed.). Springer. https://link.springer.com/book/10.1007/978-1-4614-5477-9

Mahmoudi, J., Tolou, N., Khatami, I., Barari, A., & Ganji, D. D. (2008). Explicit solution of nonlinear ZK-BBM Wave equation using exp-function method. Journal of Applied Sciences, 8(2), 358–363. https://doi.org/10.3923/jas.2008.358.363

Marinca, V., & Herisanu, N. (2011). Nonlinear dynamical systems in engineering. Springer-Verlag.

https://doi.org/10.1007/978-3-642-22735-6

Misra, J. C., & Shit, G. C. (2007). Role of slip velocity in blood flow through stenosed arteries: a non-Newtonian model. Journal of Mechanics in Medicine and Biology, 07(03), 337–353. https://doi.org/10.1142/S0219519407002303

Misra, J. C., & Shit, G. C. (2009). Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls. Journal of Applied Mechanics, 76(6), 061006. https://doi.org/10.1115/1.3130448

Misra, J. C., Sinha, A., & Shit, G. C. (2011). A numerical model for the magnetohydrodynamic flow of blood in a porous channel. Journal of Mechanics in Medicine and Biology, 11(03), 547–562. https://doi.org/10.1142/S0219519410003794

Misra, J. C., Shit, G. C., & Rath, H. J. (2008). Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to haemodynamics. Computers & Fluids, 37(1), 1-11. https://doi.org/10.1016/j.compfluid.2006.09.005

Patel, T., Mehta, M. N., & Pradhan, V. H. (2012). The numerical solution of Burger’s equation arising into the irradiation of tumour tissue in biological diffusing system by homotopy analysis method. Asian Journal of Applied Sciences, 5(1), 60–66. https://doi.org/10.3923/ajaps.2012.60.66

Sami, A., Noorani, M. S. M., & Hashim, I. (2008). Approximate analytical solutions of systems of PDEs by homotopy analysis method. Computers & Mathematics with Applications, 55(12), 2913-2923. https://doi.org/10.1016/j.camwa.2007.11.022

Shijun, L. (1998). Homotopy analysis method: a new analytic method for nonlinear problems. Applied Mathematics and Mechanics, 19(10), 957–962. https://doi.org/10.1007/BF02457955

Simmons, G. F. (2016). Differential equations with applications and historical notes (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315371825

Tripathi, R., & Mishra, H. K. (2016). Homotopy perturbation method with Laplace transform (LT-HPM) for solving Lane–Emden type differential equations (LETDEs). SpringerPlus, 5(1), 1859. https://doi.org/10.1186/s40064-016-3487-4

Vazquez-Leal, H. (2020). Exploring the novel continuum-cancellation Leal-method for the approximate solution of nonlinear differential equations. Discrete Dynamics in Nature and Society, 4967219. https://doi.org/10.1155/2020/4967219

Vazquez-Leal, H., Sarmiento-Reyes, A., Khan, Y., Filobello-Nino, U., & Diaz-Sanchez, A. (2012). Rational biparameter homotopy perturbation method and Laplace-Padé coupled version. Journal of Applied Mathematics, 2012, 923975. https://doi.org/10.1155/2012/923975

Vazquez-Leal, H., Sandoval-Hernandez, M., Castaneda-Sheissa, R., Filobello-Nino, U., & Sarmiento-Reyes, A. (2015). Modified Taylor solution of equation of oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics. International Journal of Applied Mathematics Research, 4(2), 253-258. https://doi.org/10.14419/ijamr.v4i2.4273

Xu, F. (2007). A generalized Soliton solution of the Konopelchenko-Dubrovsky equation using He’s Exp­function method. Zeitschrift für Naturforschung A, 62, 685–688. https://doi.org/10.1515/zna-2007-1202

Zill, D. G. (2012). A first course in differential equations with modeling applications (10th ed.). Brooks/Cole-Cengage Learning.