Vol. 34 (2024)
Artículos de Investigación

Design of an application to detect covid-19 using convolutional neural networks and X-ray images

Carlos Eduardo Belman López
Tecnológico Nacional de México

Publicado 2024-07-24

Cómo citar

Belman López, C. E. (2024). Design of an application to detect covid-19 using convolutional neural networks and X-ray images. Acta Universitaria, 34, 1–16. https://doi.org/10.15174/au.2024.3919

Resumen

Este documento presenta el diseño de una aplicación para detectar covid-19 utilizando redes neuronales convolucionales e imágenes de rayos X en dos escenarios (covid/No-covid y covid/Normal/Neumonía). Para evitar el sobreajuste, se utilizó aumento de datos, dropout, normalización por lotes y optimizador Adam. La red para tres clases se utilizó como modelo pre-entrenado ajustando solo la capa densa y de salida para obtener el modelo binario. Además, se realizó una optimización automatizada de hiper-parámetros como dropout, funciones de activación y número de neuronas. La tasa de aprendizaje se ajustó mediante callbacks para evadir óptimos locales. Las redes fueron convertidas al formato TensorFlow.js para integrarse en una aplicación híbrida utilizando Ionic y Capacitor, y se desplegaron mediante Firebase para brindar asistencia y soporte al generar diagnósticos. La aplicación obtuvo una exactitud del 98.61% y 96.48% para dos y tres clases, respectivamente, logrando mayor rendimiento que otras propuestas y utilizando menos parámetros de entrenamiento.

Citas

  1. American College of Radiology (ACR). (March 11, 2020). ACR Recommendations for the use of chest radiography and computed tomography (CT) for suspected covid-19 infection. https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-covid19-Infection
  2. Beysolow II, T. (2017). Introduction to deep learning using R. A step-by-step guide to learning and implementing deep learning models using R. Apress.
  3. Bosowski, P., Bosowska, J., & Nalepa, J. (2021). Evolving deep ensembles for detecting covid-19 in chest X-Rays. IEEE International Conference on Image Processing (ICIP), 3772-3776. https://doi.org/10.1109/ICIP42928.2021.9506119
  4. Chollet, F. (2018). Deep learning with Python. Manning Publications Co.
  5. Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui, J., Xu, W., Yang, Y., Fayad, Z. A., Jacobi, A., Li, K. S., & Shan, H. (2020). CT Imaging features of 2019 novel coronavirus (2019-nCoV). Radiology, 295(1). https://doi.org/10.1148/radiol.2020200230
  6. Chung, A. (2020). Actualmed covid-19 chest x-ray data initiative. https://github.com/agchung/Actualmed-covid-chestxray-dataset
  7. Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). Johannes Kepler University, Linz, Australia, pp. 1-14. arXiv:1511.07289v5
  8. Cohen, J., Morrison, P., & Dao, L. (2020). covid-19 image data collection: prospective predictions are the future. https://github.com/ieee8023/covid-chestxray-dataset
  9. European Society of Radiology (ESR). (2021). [Eurorad]. https://www.eurorad.org/advanced-search?search=covid&sort_by=published_at&sort_order=DESC&page=5
  10. Github. (2020). covid-19 Chest X-Ray Dataset Initiative. https://github.com/agchung/Figure1-covid-chestxray-dataset
  11. Google. (2023). Firebase. https://firebase.google.com/
  12. Gutierrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankic, I., & Lenza, L. (2019). A benchmarking of learning strategies for pest dete and identification on tomato plants for autonomous scouting robots using internal databases. Journal of Sensors, 2019(1), 1-16. https://doi.org/10.1155/2019/5219471
  13. Ioannis, D. A., & Tzani, B. (2020). covid-19: automatic detection from X-Ray images utilizing transfer learning with convolutional neural networks. arXiv:2003.11617
  14. Ionic. (2023). Cross-platform mobile App development: Ionic framework. https://ionicframework.com/
  15. Jacobi, A., Chung, M., Bernheim, A., & Eber, C. (2020). Portable chest X-ray in coronavirus disease-19 (covid-19): a pictorial review. Clinical Imaging, 64, 35-42. https://doi.org/10.1016/j.clinimag.2020.04.001
  16. Kaggle Inc. (2023). Chest X-Ray images (Pneumonia). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
  17. Loey, M., Smarandache, F., & Khalifa, N. E. M. (2020). Within the lack of chest covid-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning. Symmetry, 12(4), 1-19. https://doi.org/10.3390/sym12040651
  18. Mahmud, T., Rahman, M. A., & Fattah, S. A. (2020). CovXNet: a multi-dilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Computers in Biology and Medicine, 122, 103869. https://doi.org/10.1016/j.compbiomed.2020.103869
  19. Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic detection of coronavirus disease (covid-19) using X-ray images and deep convolutional neural networks. arXiv:2003.10849
  20. Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., & Yildirim, O. (2020). Automated detection of covid-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 1-11. https://doi.org/10.1016/j.compbiomed.2020.103792
  21. Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv:1804.02763v1
  22. Radiopaedia. (2021). [covid-19]. Radiopaedia.org. https://radiopaedia.org/articles/covid-19-4?lang=us
  23. Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 1-9. https://doi.org/10.1016/j.imu.2020.100360
  24. Rong, G., Mendez, A., Assi, E. B., Zhao, B., & Sawan, M. (2020). Artificial Intelligence in Healthcare: review and prediction case studies. Engineering, 6(3), 291–301. https://doi.org/10.1016/j.eng.2019.08.015
  25. Rosebrock, A. (2017). Deep learning for computer vision with Python. PyImageSearch.
  26. SAS Institute Inc. (2023). Machine learning: What it is and why it matters SAS. https://www.sas.com/en_us/insights/analytics/machine-learning.html#machine-learning-importance
  27. Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19) based on deep features. Preprints.org. https://doi.org/10.20944/preprints202003.0300.v1
  28. Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: the all convolutional net. arXiv:1412.6806v3
  29. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from over. Journal of Machine Learning Research, 15, 1929-1958.
  30. Tensorflow. (2023). TensorFlow.js | Machine Learning for JavaScript Developers. TensorFlow.org.
  31. https://www.tensorflow.org/js
  32. The Italian Society of Medical and Interventional Radiology (SIRM). (2020). [covid-19 database]. https://www.sirm.org/en/category/articles/covid-19-database/
  33. Wang, J., Ma, Y., Zhang, L., Gao, R., & Wu, D. (2018). Deep learning for smart manufacturing: methods and applications. Journal of Manufacturing Systems, 48, 1-13. https://doi.org/10.1016/j.jmsy.2018.01.003
  34. Wang, L., Lin, Z. Q., & Wong, A. (2020). covid-Net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-Ray images. arXiv:2003.09871
  35. World Health Organization (WHO). (June 06, 2020). Coronavirus disease (covid-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  36. World Health Organization (WHO). (2022). Coronavirus. https://www.who.int/health-topics/coronavirus#tab=tab_1
  37. Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23-45. https://doi.org/10.1080/21693277.2016.1192517
  38. Yu, T., & Zhu, H. (2020). Hyper-Parameter optimization: a review of algorithms and applications. arXiv:2003.05689
  39. Zhou, S., Wang, Y., Zhu, T., & Xia, L. (2020). CT features of coronavirus disease 2019 (covid-19). American Journal of Roentgenology, 214(6), 1287-1294. https://doi.org/10.2214/AJR.20.22975