Design of an application to detect covid-19 using convolutional neural networks and X-ray images
Publicado 2024-07-24
Cómo citar
Resumen
Este documento presenta el diseño de una aplicación para detectar covid-19 utilizando redes neuronales convolucionales e imágenes de rayos X en dos escenarios (covid/No-covid y covid/Normal/Neumonía). Para evitar el sobreajuste, se utilizó aumento de datos, dropout, normalización por lotes y optimizador Adam. La red para tres clases se utilizó como modelo pre-entrenado ajustando solo la capa densa y de salida para obtener el modelo binario. Además, se realizó una optimización automatizada de hiper-parámetros como dropout, funciones de activación y número de neuronas. La tasa de aprendizaje se ajustó mediante callbacks para evadir óptimos locales. Las redes fueron convertidas al formato TensorFlow.js para integrarse en una aplicación híbrida utilizando Ionic y Capacitor, y se desplegaron mediante Firebase para brindar asistencia y soporte al generar diagnósticos. La aplicación obtuvo una exactitud del 98.61% y 96.48% para dos y tres clases, respectivamente, logrando mayor rendimiento que otras propuestas y utilizando menos parámetros de entrenamiento.
Citas
- American College of Radiology (ACR). (March 11, 2020). ACR Recommendations for the use of chest radiography and computed tomography (CT) for suspected covid-19 infection. https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-covid19-Infection
- Beysolow II, T. (2017). Introduction to deep learning using R. A step-by-step guide to learning and implementing deep learning models using R. Apress.
- Bosowski, P., Bosowska, J., & Nalepa, J. (2021). Evolving deep ensembles for detecting covid-19 in chest X-Rays. IEEE International Conference on Image Processing (ICIP), 3772-3776. https://doi.org/10.1109/ICIP42928.2021.9506119
- Chollet, F. (2018). Deep learning with Python. Manning Publications Co.
- Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui, J., Xu, W., Yang, Y., Fayad, Z. A., Jacobi, A., Li, K. S., & Shan, H. (2020). CT Imaging features of 2019 novel coronavirus (2019-nCoV). Radiology, 295(1). https://doi.org/10.1148/radiol.2020200230
- Chung, A. (2020). Actualmed covid-19 chest x-ray data initiative. https://github.com/agchung/Actualmed-covid-chestxray-dataset
- Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). Johannes Kepler University, Linz, Australia, pp. 1-14. arXiv:1511.07289v5
- Cohen, J., Morrison, P., & Dao, L. (2020). covid-19 image data collection: prospective predictions are the future. https://github.com/ieee8023/covid-chestxray-dataset
- European Society of Radiology (ESR). (2021). [Eurorad]. https://www.eurorad.org/advanced-search?search=covid&sort_by=published_at&sort_order=DESC&page=5
- Github. (2020). covid-19 Chest X-Ray Dataset Initiative. https://github.com/agchung/Figure1-covid-chestxray-dataset
- Google. (2023). Firebase. https://firebase.google.com/
- Gutierrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankic, I., & Lenza, L. (2019). A benchmarking of learning strategies for pest dete and identification on tomato plants for autonomous scouting robots using internal databases. Journal of Sensors, 2019(1), 1-16. https://doi.org/10.1155/2019/5219471
- Ioannis, D. A., & Tzani, B. (2020). covid-19: automatic detection from X-Ray images utilizing transfer learning with convolutional neural networks. arXiv:2003.11617
- Ionic. (2023). Cross-platform mobile App development: Ionic framework. https://ionicframework.com/
- Jacobi, A., Chung, M., Bernheim, A., & Eber, C. (2020). Portable chest X-ray in coronavirus disease-19 (covid-19): a pictorial review. Clinical Imaging, 64, 35-42. https://doi.org/10.1016/j.clinimag.2020.04.001
- Kaggle Inc. (2023). Chest X-Ray images (Pneumonia). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
- Loey, M., Smarandache, F., & Khalifa, N. E. M. (2020). Within the lack of chest covid-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning. Symmetry, 12(4), 1-19. https://doi.org/10.3390/sym12040651
- Mahmud, T., Rahman, M. A., & Fattah, S. A. (2020). CovXNet: a multi-dilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Computers in Biology and Medicine, 122, 103869. https://doi.org/10.1016/j.compbiomed.2020.103869
- Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic detection of coronavirus disease (covid-19) using X-ray images and deep convolutional neural networks. arXiv:2003.10849
- Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., & Yildirim, O. (2020). Automated detection of covid-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 1-11. https://doi.org/10.1016/j.compbiomed.2020.103792
- Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv:1804.02763v1
- Radiopaedia. (2021). [covid-19]. Radiopaedia.org. https://radiopaedia.org/articles/covid-19-4?lang=us
- Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 1-9. https://doi.org/10.1016/j.imu.2020.100360
- Rong, G., Mendez, A., Assi, E. B., Zhao, B., & Sawan, M. (2020). Artificial Intelligence in Healthcare: review and prediction case studies. Engineering, 6(3), 291–301. https://doi.org/10.1016/j.eng.2019.08.015
- Rosebrock, A. (2017). Deep learning for computer vision with Python. PyImageSearch.
- SAS Institute Inc. (2023). Machine learning: What it is and why it matters SAS. https://www.sas.com/en_us/insights/analytics/machine-learning.html#machine-learning-importance
- Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19) based on deep features. Preprints.org. https://doi.org/10.20944/preprints202003.0300.v1
- Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: the all convolutional net. arXiv:1412.6806v3
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from over. Journal of Machine Learning Research, 15, 1929-1958.
- Tensorflow. (2023). TensorFlow.js | Machine Learning for JavaScript Developers. TensorFlow.org.
- https://www.tensorflow.org/js
- The Italian Society of Medical and Interventional Radiology (SIRM). (2020). [covid-19 database]. https://www.sirm.org/en/category/articles/covid-19-database/
- Wang, J., Ma, Y., Zhang, L., Gao, R., & Wu, D. (2018). Deep learning for smart manufacturing: methods and applications. Journal of Manufacturing Systems, 48, 1-13. https://doi.org/10.1016/j.jmsy.2018.01.003
- Wang, L., Lin, Z. Q., & Wong, A. (2020). covid-Net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-Ray images. arXiv:2003.09871
- World Health Organization (WHO). (June 06, 2020). Coronavirus disease (covid-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
- World Health Organization (WHO). (2022). Coronavirus. https://www.who.int/health-topics/coronavirus#tab=tab_1
- Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23-45. https://doi.org/10.1080/21693277.2016.1192517
- Yu, T., & Zhu, H. (2020). Hyper-Parameter optimization: a review of algorithms and applications. arXiv:2003.05689
- Zhou, S., Wang, Y., Zhu, T., & Xia, L. (2020). CT features of coronavirus disease 2019 (covid-19). American Journal of Roentgenology, 214(6), 1287-1294. https://doi.org/10.2214/AJR.20.22975