Vol. 34 (2024)
Artículos de Investigación

Simulación de comunicación emergente en robótica: apoyo a las cadenas de suministro empleando computación evolutiva

Fernando Aldana
Universidad Veracruzana
Rosario Aldana
Universidad Veracruzana
Ervin Álvarez
Universidad Veracruzana
Fernando Montes
Universidad Veracruzana
Gustavo Leyva
Universidad Veracruzana

Publicado 2024-07-03

Cómo citar

Aldana Franco, F., Aldana Franco, R., Álvarez Sánchez, E. J., Montes González, F., & Leyva Retureta, J. G. (2024). Simulación de comunicación emergente en robótica: apoyo a las cadenas de suministro empleando computación evolutiva. Acta Universitaria, 34, 1–15. https://doi.org/10.15174/au.2024.3939

Resumen

Se presenta un modelo emergente de cooperación y comunicación que involucra un conjunto de robots MarxBot. La tarea consiste en recolección de materia prima almacenada y su depósito en la banda de procesamiento, además de la recolección del elemento fabricado y su depósito en una banda de empaquetado. Los robots son controlados mediante redes neuronales artificiales que son optimizadas mediante un algoritmo genético en el simulador robótico conocido como FARSA (framework for autonomous robotics simulation and analysis). Se prueba en un ambiente simulado de grupos homogéneos de robots con comunicación emergente basada en diodos emisores de luz (LED, por sus siglas en inglés), los cuales tienen un mejor rendimiento en la tarea propuesta que un sistema de comunicación con señales preestablecidas y un grupo que no tiene capacidad de comunicación. Esto se debe al nivel de organización provisto por la emergencia de señales que proviene del grupo y de la interacción con el entorno. Esto demuestra que la perspectiva de la robótica evolutiva es aplicable a las necesidades de la Industria 4.0.

Citas

  1. Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: a review. Electronics, 10(21), 2689. https://doi.org/10.3390/electronics10212689
  2. Aldana-Franco, F., Montes-González, F., & Nolfi, S. (2024). The improvement of signal communication for a foraging task using evolutionary robotics. Journal of Applied Research and Technology, 22(1), 90-101. https://doi.org/10.22201/icat.24486736e.2024.22.1.1652
  3. Arunkumar, S., Suganeswaran, K., Nithyavathy, N., & Gobinath, V. K. (2020). Semi-automatic cloth bag making machine. Materials Today: Proceedings, 33, 3454-3457. https://doi.org/10.1016/j.matpr.2020.05.353
  4. Asad, R., Hayakawa, T., & Yasuda, T. (2023). Evolutionary design of cooperative transport behavior for a heterogeneous robotic swarm. Journal of Robotics and Mechatronics, 35(4), 1007-1015. https://doi.org/10.20965/jrm.2023.p1007
  5. Bragança, S., Costa, E., Castellucci, I., & Arezes, P. M. (2019). A brief overview of the use of collaborative robots in industry 4.0: human role and safety. Occupational and Environmental Safety and Health, 641-650. https://doi.org/10.1007/978-3-030-14730-3_68
  6. Cáceres, C. A., Rosário, J. M., & Amaya, D. (2020). Control structure for a car-like robot using artificial neural networks and genetic algorithms. Neural Computing and Applications, 32(20), 15771-15784. https://doi.org/10.1007/s00521-018-3514-1
  7. Cambier, N., Miletitch, R., Frémont, V., Dorigo, M., Ferrante, E., & Trianni, V. (2020). Language evolution in swarm robotics: a perspective. Frontiers in Robotics and AI, 7, 12. https://doi.org/10.3389/frobt.2020.00012
  8. Carvalho, J. T., & Nolfi, S. (2024). The role of morphological variation in evolutionary robotics: maximizing performance and robustness. Evolutionary Computation, 1-18. https://doi.org/10.1162/evco_a_00336
  9. Castelló, E., Jiménez, E., Lopez-Presa, J. L., & Martín-Rueda, J. (2021). Following leaders in byzantine multirobot systems by using blockchain technology. IEEE Transactions on Robotics, 38(2), 1101-1117. https://doi.org/10.1109/TRO.2021.3104243
  10. Chaabouni, R., Kharitonov, E., Dupoux, E., & Baroni, M. (2021). Communicating artificial neural networks develop efficient color-naming systems. Proceedings of the National Academy of Sciences, 118(12), e2016569118. https://doi.org/10.1073/pnas.2016569118
  11. Chavan, S., Patil, U., Koshy, S. S., & Srikanth, S. V. (2021). Garbage zero (Garb0): an IoT framework for effective garbage management in smart cities. In 2021 International Conference on Artificial intelligence and Smart Systems (ICAIS), 1336-1342. IEEE. https://doi.org/10.1109/ICAIS50930.2021.9395970
  12. Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211. https://doi.org/10.3390/su12198211
  13. Devi, K. V. R., Smitha, B. S., Lakhanpal, S., Kalra, R., Sethi, V. A., & Thajil, S. K. (2024). A review: swarm robotics: cooperative control in multi-agent systems. In E3S Web of Conferences, 505, (03013). EDP Sciences. https://doi.org/10.1051/e3sconf/202450503013
  14. Doncieux, S., Bredeche, N., Mouret, J. B., & Eiben, A. E. G. (2015). Evolutionary robotics: what, why, and where to. Frontiers in Robotics and AI, 2, 4. https://doi.org/10.3389/frobt.2015.00004
  15. Feng, H., Xue, Y., Li, H., Tang, Z., Wang, W., Wei, Z., Zeng, G., Li, M., & Dai, J. S. (2023). Deformable morphing and multivariable stiffness in the evolutionary robotics. International Journal of Automotive Manufacturing and Materials, 2(4), 1. https://doi.org/10.53941/ijamm.2023.100013
  16. Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management, 31(4), 669-686. https://doi.org/10.1108/JMTM-10-2019-0368
  17. Gigliotta, O. (2018). Equal but different: task allocation in homogeneous communicating robots. Neurocomputing, 272, 3-9. https://doi.org/10.1016/j.neucom.2017.05.093
  18. Goncalves, C. G., Winroth, M. P., & Ribeiro da Silva, E. H. D. (2020). Sustainable manufacturing in Industry 4.0: an emerging research agenda. International Journal of Production Research, 58(5), 1462-1484. https://doi.org/10.1080/00207543.2019.1652777
  19. Guan, W., Wu, Y., Xie, C., Chen, H., Cai, Y., & Chen, Y. (2017). High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms. Optical Engineering, 56(10), 106103. https://doi.org/10.1117/1.OE.56.10.106103
  20. Gupta, N., Khosravy, M., Patel, N., Gupta, S., & Varshney, G. (2020). Evolutionary artificial neural networks: comparative study on state-of-the-art optimizers. Frontier Applications of Nature Inspired Computation, 302-318. https://doi.org/10.1007/978-981-15-2133-1_14
  21. Hiraga, M., & Ohkura, K. (2022). Topology and weight evolving artificial neural networks in cooperative transport by a robotic swarm. Artificial Life and Robotics, 27(2), 324-332. https://doi.org/10.1007/s10015-021-00716-9
  22. Howard, D., Collins, J., & Robinson, N. (2022). Taking shape: a perspective on the future of embodied cognition and a new generation of evolutionary robotics. IOP Conference Series: Materials Science and Engineering, 1261(1), 012018. https://doi.org/10.1088/1757-899X/1261/1/012018
  23. Husbands, P., Shim, Y., Garvie, M., Dewar, A., Domcsek, N., Graham, P., Knight, J., Nowotny, T., & Philippides, A. (2021). Recent advances in evolutionary and bio-inspired adaptive robotics: exploiting embodied dynamics. Applied Intelligence, 51(9), 6467-6496. https://doi.org/10.1007/s10489-021-02275-9
  24. Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1, 58-75. https://doi.org/10.1016/j.cogr.2021.06.001
  25. Karten, S., Tucker, M., Li, H., Kailas, S., Lewis, M., & Sycara, K. (2023). Interpretable learned emergent communication for human-agent teams. IEEE Transactions on Cognitive and Developmental Systems, 15(4). https://doi.org/10.1109/TCDS.2023.3236599
  26. Kohl, P. L., & Rutschmann, B. (2021). Honey bees communicate distance via non-linear waggle duration functions. PeerJ, 9, e11187. https://doi.org/10.7717/peerj.11187
  27. Lan, Q., Wen, D., Zhang, Z., Zeng, Q., Chen, X., Popovski, P., & Huang, K. (2021). What is semantic communication? A view on conveying meaning in the era of machine intelligence. Journal of Communications and Information Networks, 6(4), 336-371. https://doi.org/10.23919/JCIN.2021.9663101
  28. Lazaridou, A., & Baroni, M. (2020). Emergent multi-agent communication in the deep learning era. Computation and Language, 1. https://doi.org/10.48550/arXiv.2006.02419
  29. Lins, R. G., & Givigi, S. N. (2021). Cooperative robotics and machine learning for smart manufacturing: platform design and trends within the context of industrial internet of things. IEEE Access, 9, 95444. https://doi.org/10.1109/ACCESS.2021.3094374
  30. López, E. J., Leonards, U., & Hermann, G. (2022). Cognitive control decision and human-robot collaboration. In A. Cangelosi & M. Asada (eds.), Cognitive Robotics (pp. 337-360). MIT Press. https://doi.org/10.7551/mitpress/13780.003.0023
  31. Mastos, T. D., Nizamis, A., Vafeiadis, T., Alexopoulos, N., Ntinas, C., Gkortzis D., Papadopoulos, A., Ioannidis, D., & Tzovaras, D. (2020). Industry 4.0 sustainable supply chains: an application of an IoT enabled scrap metal management solution. Journal of cleaner production, 269, 122377. https://doi.org/10.1016/j.jclepro.2020.122377
  32. Massera, G., Ferrauto, T., Gigliotta, O., & Nolfi, S. (2013). Farsa: an open software tool for embodied cognitive science. Advances in Artificial Life, (12), 538-545. https://doi.org/10.1162/978-0-262-31709-2-ch078
  33. Shamout, M., Ben-Abdallah, R., Alshurideh, M., Alzoubi, H., Kurdi, B. A., & Hamadneh, S. (2022). A conceptual model for the adoption of autonomous robots in supply chain and logistics industry. Uncertain Supply Chain Management, 10(2), 577-592. https://doi.org/10.5267/j.uscm.2021.11.006
  34. Milano, N., Carvalho, J. T., & Nolfi, S. (2019). Moderate environmental variation across generations promotes the evolution of robust solutions. Artificial life, 24(4), 277-295. https://doi.org/10.1162/artl_a_00274
  35. Miletitch, R., Reina, A., Dorigo, M., & Trianni, V. (2022). Emergent naming conventions in a foraging robot swarm. Swarm Intelligence, 16(3), 211-232. https://doi.org/10.1007/s11721-022-00212-1
  36. Mourtzis, D., Papakostas, N., & Makris, S. (2019). Complexity in Industry 4.0. Systems and Networks. Complexity, 2019, 1-2. https://doi.org/10.1155/2019/7817046
  37. Muralidharan, A., & Mostofi, Y. (2021). Communication-aware robotics: Exploiting motion for communication. Annual Review of Control, Robotics, and Autonomous Systems, 4, 115-139. https://doi.org/10.1146/annurev-control-071420-080708
  38. Pagliuca, P., & Nolfi, S. (2022). The dynamic of body and brain co-evolution. Adaptive Behavior, 30(3), 245-255. https://doi.org/10.1177/1059712321994685
  39. Pagliuca, P., & Vitanza, A. (2023). N-Mates evaluation: a new method to improve the performance of genetic algorithms in heterogeneous multi-agent systems. https://ceur-ws.org/Vol-3579/paper9.pdf
  40. Palacios-Leyva, R., Aldana-Franco, F., Lara-Guzmán, B., & Montes-González, F. (2017). The impact of population composition for cooperation emergence in evolutionary robotics. International Journal of Combinatorial Optimization Problems and Informatics, 8(3), 20-32. https://ijcopi.org/ojs/article/view/15
  41. Patel, S., Wani, S., Jain, U., Schwing, A., Lazebnik, S., Savva, M., & Chang, A. X. (2021). Interpretation of emergent communication in heterogeneous collaborative embodied agents. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 15953-15963). https://doi.org/10.1109/ICCV48922.2021.01565
  42. Sathiya, V., Chinnadurai, M., Ramabalan, S., & Appolloni, A. (2021). Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company. Environment, Development and Sustainability, 23(6), 9110-9138. https://doi.org/10.1007/s10668-020-01015-2
  43. Silva, F., Duarte, M., Correia, L., Oliveira, S. M., & Christensen, A. L. (2016). Open issues in evolutionary robotics. Evolutionary Computation, 24(2), 205-236. https://doi.org/10.1162/EVCO_a_00172
  44. Simione, L., & Nolfi, S. (2020). Long-term progress and behavoir complexification in competitive coevolution. Artificial Life, 26(4), 409-430. https://doi.org/10.1162/artl_a_00329
  45. Steyven, A., Hart, E., & Paechter, B. (2015). The cost of communication: environmental pressure and survivability in mEDEA. In Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference, 1239-1240. https://doi.org/10.1145/2739482.2768489
  46. Thomas, C. K., & Saad, W. (2023). Neuro-symbolic causal reasoning meets signaling game for emergent semantic communications. IEEE Transactions on Wireless Communications, 23(5). https://doi.org/10.1109/TWC.2023.3319981
  47. Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0–a glimpse. Procedia Manufacturing, 20, 233-238. https://doi.org/10.1016/j.promfg.2018.02.034
  48. Wan, J., Tang, S., Li, D., Imran, M., Zhang, C., Liu, C., & Pang, Z. (2019). Reconfigurable smart factory for drug packing in healthcare industry 4.0. IEEE transactions on industrial informatics, 15(1), 507-516. https://doi.org/10.1109/TII.2018.2843811
  49. Yang, J. Q., Wang, R., Ren, Y., Mao, J. Y., Wang, Z. P., Zhou, Y., & Han, S. T. (2020). Neuromorphic engineering: from biological to spike‐based hardware nervous systems. Advanced Materials, 32(52), 2003610. https://doi.org/10.1002/adma.202003610
  50. Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147-2152. https://doi.org/10.1109/FSKD.2015.7382284