El microambiente como limitante de la actividad de los visitantes florales en una población del bonete de obispo (Astrophytum myriostigma)
PDF

Cómo citar

Martínez-Adriano, C. A., Romero-Méndez, U. ., Flores, J., & Jurado, E. (2024). El microambiente como limitante de la actividad de los visitantes florales en una población del bonete de obispo (Astrophytum myriostigma). Acta Universitaria, 34, 1–28. https://doi.org/10.15174/au.2024.3961

Resumen

Las condiciones bióticas y ambientales podrían afectar la dinámica planta-visitante floral y la deposición de frutos en las angiospermas. Los objetivos del estudio fueron: 1) probar el efecto del microambiente sobre los visitantes florales de A. myriostigma y 2) describir la estructura de la red planta-visitante floral. Los datos se registraron durante dos floraciones sincrónicas. El efecto del microambiente sobre los visitantes florales fue analizado con modelos lineales generalizados, y se describió la estructura de la red de interacciones. Los visitantes fueron afectados principalmente por la presión atmosférica y el punto de rocío. Hubo menos visitantes florales en plantas cercanas a nodrizas y rocas. La topología de la red de interacciones tuvo una tendencia de estructura anidada. Ante la disminución de polinizadores, estos hallazgos ayudan a comprender qué factores limitan la actividad de los visitantes florales. Las interacciones entre estos visitantes y las plantas podrían modificarse por el cambio climático.

https://doi.org/10.15174/au.2024.3961
PDF

Citas

Abrol, D. P. (1988). Environmental factors influencing pollination activity of Apis mellifera on Brassica campestris. Journal of the Indian Institute of Science, 68(1-2), 49-52. https://journal.iisc.ac.in/index.php/iisc/article/view/1201/0

Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117(8), 1227-1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x

Ankney, P. F. (1984). A note on barometric pressure and behavior in Drosophila pseudoobscura. Behavior Genetics, 14, 315-317. https://doi.org/10.1007/BF01065549

Ball, P. (2003). Global greenhouse affects air pressure. Nature. https://doi.org/10.1038/news030317-6

Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387. https://doi.org/10.1073/pnas.1633576100

Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431-433. https://doi.org/10.1126/science.1123412

Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems. Blackwell Publishing Ltd.

Beutelspacher, C. R., & Ramírez, M. (1973). Polinización en Stenocereus marginatus (D.C.) Briton & Rose. Cactáceas y Suculentas Mexicanas, 18, 80-83.

Bishop, J., Jones, H. E., O’Sullivan, D. M., & Potts, S. G. (2016). Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba). Journal of Experimental Botany, 68(8), 2055-2063. https://doi.org/10.1093/jxb/erw430

Blair, A. W., & Williamson, P. S. (2008). Effectiveness and importance of pollinators to the star cactus (Astrophytum asterias). The Southwestern Naturalist, 53(4), 423-430. https://doi.org/10.1894/JB-04.1

Blüthgen, N., Fründ, J., Vázquez, D. P., & Menzel, F. (2008). What do interaction network metrics tell us about specialization and biological traits. Ecology, 89(12), 3387-3399. https://doi.org/10.1890/07-2121.1

Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6(9). http://dx.doi.org/10.1186/1472-6785-6-9

Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints and conflicting interests in mutualistic networks. Current Biology, 17(7), 341-346. https://doi.org/10.1016/j.cub.2006.12.039

Borror, D., & White, R. (1970). A field guide to the insects of North of Mexico. Houghton Mifflin Company.

Bravo-Hollis, H., & Sánchez-Mejorada, H. (1986). Las cactáceas de México. Vol. II. UNAM.

Brittain, C., Williams, N., Kremen, C., & Klein, A. M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B, 280, 20122767. https://doi.org/10.1098/rspb.2012.2767

Cádiz-Véliz, A., Verdessi, F., & Carvallo, G. O. (2021). Shrub canopy matrix decreases reproductive output of a sheltered plant via pollinator exclusion. Basic and Applied Ecology, 56, 419-430. https://doi.org/10.1016/j.baae.2021.04.013

Cano-Villegas, O., Muro-Pérez, G., Castañeda-Gaytán, G., & Sánchez-Salas, J. (2022). Tendencias locales de cambio climático y sus efectos en la Cuenca Nazas-Aguanaval: análisis de un periodo de 80 años (1940-2020). Revista Ciencia UANL, 25(113), 34-38. https://doi.org/10.29105/cienciauanl25.113-1

Chadwick, L. E., & Williams, C. M. (1949). The effects of atmospheric pressure and composition on the flight of Drosophila. The Biological Bulletin, 97(2), 115-137. https://doi.org/10.2307/1538291

Crespo, J. E., & Castelo, M. K. (2012). Barometric pressure influences host-orientation behavior in the larva of a dipteran ectoparasitoid. Journal of Insect Physiology, 58(12), 1562-1567. https://doi.org/10.1016/j.jinsphys.2012.09.010

Cuevas, J., Rallo, L., & Rapoport, H. (1994). Initial fruit set at high temperature in olive, Olea europaea L. Journal of Horticultural Science, 69(4), 665-672. https://doi.org/10.1080/14620316.1994.11516498

Dalsgaard, B., Martín-González, A. M., Olesen, J. M., Ollerton, J., Timmermann, A., Andersen, L. H., & Tossas, A. G. (2009). Plant-hummingbird interactions in the West Indies: floral specialization gradients associated with environment and hummingbird size. Oecologia, 159, 757-766. https://doi.org/10.1007/s00442-008-1255-z

Dalsgaard, B., Trøjelsgaard, K., Martín-González, A. M., Nogués-Bravo, D., Ollerton, J., Petanidou, T., Sandel, B., Schleuning, M., Wang, Z., Rahbek, C., Sutherland, W. J., Svenning, J. C., & Olesen, J. M. (2013). Historical climate‐change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340. https://doi.org/10.1111/j.1600-0587.2013.00201.x

Dáttilo, W., Fagundes, R., Gurka, C. A. Q., Silva, M. S. A., Vieira, M. C. L., Izzo, T. J., Díaz-Castelazo, C., Del-Claro, K., & Rico-Gray, V. (2014). Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship. PLoS ONE, 9, e99838. https://doi.org/10.1371/journal.pone.0099838

Dáttilo, W., Guimarães, P. R., & Izzo, T. J. (2013). Spatial structure of ant-plant mutualistic networks. Oikos, 122(11), 1643-1648. https://doi.org/10.1111/j.1600-0706.2013.00562.x

De Almeida, A., & Mikich, S. B. (2018). Combining plant-frugivore networks for describing the structure of neotropical communities. Oikos, 127(2), 184-196. https://doi.org/10.1111/oik.04774

Delph, L. F., Johannsson, M. H., & Stephenson, A. G. (1997). How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology, 78(6), 1632-1639. https://doi.org/10.1890/0012-9658(1997)078[1632:HEFAPP]2.0.CO;2

Devoto, M., Medan, D., & Montaldo, N. H. (2005). Patterns of interaction between plants and pollinators along an environmental gradient. Oikos, 109(3), 461-472. https://doi.org/10.1111/j.0030-1299.2005.13712.x

Díaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91(3), 793-801. https://doi.org/10.1890/08-1883.1

Díaz-Castelazo, C., Martínez-Adriano, C. A., Dáttilo, W., & Rico-Gray, V. (2020). Relative contribution of ecological and biological attributes in the fine-grain structure of ant-plant networks. PeerJ, 8, e8314. https://doi.org/10.7717/peerj.8314

Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, P. R., Galdini-Raimundo, R. L., & Rico-Gray, V. (2013). Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111(6), 1285-1293. https://doi.org/10.1093/aob/mct071

Dobson, A. J., & Barnett, A. G. (2008). An introduction to generalized linear models (Third Edition). Chapman & Hall/CRC.

Dormann, C. F., & Gruber, B. (2009). Package ”Bipartite”: visualizing bipartite networks and calculating some ecological indices. R statistical software. `R group'. Available at https://CRAN.R-project.org/ package=bipartite

Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, (2), 7-24. http://dx.doi.org/10.2174/1874213000902010007

Dormann, C. F. (2011). How to be a specialist? quantifying specialization in pollination networks. Network Biology, 1(1), 1-20.

Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12917-12922. https://doi.org/10.1073/pnas.192407699

Dupont, Y. L., Padrón, B., Olesen, J. M., & Petanidou, T. (2009). Spatio-temporal variation in the structure of pollination networks. Oikos, 118(8), 1261-1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x

Espíndola, A., Pellissier, L., & Álvarez, N. (2011). Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos, 120(5), 728-734. https://doi.org/10.1111/j.1600-0706.2010.18937.x

Flores, J., & Jurado, E. (2003). Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14(6), 911-916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x

Fox, J. (2016). Applied regression analysis and generalized linear models (Third Edition). SAGE Publications, Inc.

García, E. (1981). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana) (Tercera Edición). Instituto de Geología, Universidad Autónoma de México.

Gillett, N. P., Zwiers, F. W., Weaver, A. J., & Stott, P. A. (2003). Detection of human influence on sea-level pressure. Nature, 422, 292-294. https://doi.org/10.1038/nature01487

Gillot, C. (2005). Entomology (Third Edition). Springer.

González-Elizondo, M. S., González-Elizondo, M., & Márquez-Linares, M. A. (2007). Vegetación y ecorregiones de Durango. Plaza y Valdés, S.A. de C.V.

Grüter, C., & Ratnieks, F. L. W. (2011). Flower constancy in insect pollinators: Adaptive foraging behavior or cognitive limitation?. Communicative & Integrative Biology, 4(6), 633-636. https://doi.org/10.4161/cib.16972

Guimarães, P. R., & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling & Software, 21(10), 1512-1513. https://doi.org/10.1016/j.envsoft.2006.04.002

Harder, L. D. (1990). Pollen removal by bumble bees and its implications for pollen dispersal. Ecology, 71(3), 1110-1125. https://doi.org/10.2307/1937379

Harder, L. D., & Johnson, S. D. (2005). Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society B-Biological Sciences, 272, 2651-2657. https://doi.org/10.1098/rspb.2005.3268

Haufe, W. O. (1954). The effects of atmospheric pressure on the flight responses of Aëdes aegypti (L.). Bulletin of Entomological Research, 45, 507-526. https://doi.org/10.1017/S000748530002959X

Hedhly, A., Hormaza, J. I., & Herrero, M. (2003). The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant, Cell & Environment, 26(10), 1673-1680. https://doi.org/10.1046/j.1365-3040.2003.01085.x

Hedhly, A., Hormaza, J. I., & Herrero, M. (2004). Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). American Journal of Botany, 91(4), 558-564. https://doi.org/10.3732/ajb.91.4.558

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology Letters, 12, 184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x

Hernández-Yáñez, H., Lara-Rodríguez, N., Díaz-Castelazo, C., Dáttilo, W., & Rico-Gray, V. (2013). Understanding the complex structure of a plant-floral visitor network from different perspectives in Coastal Veracruz, México. Sociobiology, 60(3), 329-336. https://doi.org/10.13102/sociobiology.v60i3.329-336

Herrera, C. M. (1995). Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology, 76(5), 1516-1524. https://doi.org/10.2307/1938153

Herrera, C. M. (1996). Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In D. G. Lloyd & S. C. H. Barrett (eds.), Floral Biology: Studies on floral evolution in animal-pollinated plants (pp. 65-87). Chapman and Hall.

Huerta-Martínez, F. M. (1995). Algunos aspectos sobre la polinización de Opuntia streptacantha Lemaire. Cactáceas y Suculentas Mexicanas, 40, 68-72.

Ibarra-Cerdeña, C. N., Íñiguez-Dávalos, L. I., & Sánchez-Cordero, V. (2005). Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico. American Journal of Botany, 92(3), 503-509. https://doi.org/10.3732/ajb.92.3.503

Instituto Nacional de Estadística y Geografía (INEGI). (2000). Carta de Climas del Estado de Durango, 1:100 000, Gómez Palacio, Dgo., México.

Inoue, T., & Kato, M. (1992). Inter and intraspecific morphological variation in bumblebee species, and competition in flower utilization. In M. D Hunter, T. Ohgushi, & P. W. Price (eds.), Effects of resource distribution on animal-plant interactions (pp. 393-427). Academic Press.

Johnson, R. A. (1992). Pollination and reproductive ecology of Acuña cactus, Echinomastus erectrocentrus var. acunensis (Cactaceae). International Journal of Plant Sciences, 153(3), 400-408. https://doi.org/10.1086/297044

Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist, 129(5), 657-677. https://doi.org/10.1086/284665

Jou, Y. J., Huang, C. C. L., & Cho, H. J. (2014). A VIF-based optimization model to alleviate collinearity problems in multiple linear regression. Computational Statistics, 29, 1515-1541. https://doi.org/10.1007/s00180-014-0504-3

King, C., Ballantyne, G., & Willmer, P. G. (2013). Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution, 4(9), 811-818. https://doi.org/10.1111/2041-210X.12074

Kuppler, J., & Kotowska, M. M. (2021). A meta-analysis of responses in floral traits and flower–visitor interactions to water deficit. Global Change Biology, 27(13), 3095-3108. https://doi.org/10.1111/gcb.15621

Ladd, P. G., Yates, C. J., Dillon, R., & Palmer, R. (2019). Pollination ecology of Tetratheca species from isolated, arid habitats (Banded Iron Formations) in Western Australia. Australian Journal of Botany, 67(3), 248-255. https://doi.org/10.1071/BT18249

Lanier, G. N., & Burns, B. W. (1978). Barometric flux. Effects on the responsiveness of bark beetles aggregation attractants. Journal of Chemical Ecology, 4, 139-147. https://doi.org/10.1007/BF00988050

Lau, J. A., & Galloway, L. F. (2004). Effects of low-efficiency pollinators on plant fitness and floral trait evolution in Campanula americana (Campanulaceae). Oecologia, 141, 577-583. https://doi.org/10.1007/s00442-004-1677-1

Leskey, T. C., & Prokopy, R. J. (2003). Influence of barometric pressure on odor discrimination and oviposition by adult plum curculios (Coleoptera: Curculionidae). European Journal of Entomology, 100(4), 517–520. https://doi.org/10.14411/eje.2003.079

Li, J., & Margolies, D. C. (1994). Barometric pressure influences initiation of aerial dispersal in the twospotted spider mite. Journal of the Kansas Entomological Society, 67(4), 386-393. http://www.jstor.org/stable/25085545

Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13, 187-199. https://doi.org/10.1023/A:1007732113390

Martín-González, A. M., Dalsgaard, B., Ollerton, J., Timmermann, A., Olesen, J. M., Andersen, L., & Tossas, A. G. (2009). Effects of climate on pollination networks in the West Indies. Journal of Tropical Ecology, 25(5), 493-506. https://doi.org/10.1017/S0266467409990034

Martínez-Adriano, C. A., Díaz-Castelazo, C., & Aguirre-Jaimes, A. (2018). Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ, 6, e5493. https://doi.org/10.7717/peerj.5493

Martínez-Adriano, C. A., Romero-Méndez, U., Flores, J., Jurado, E., & Estrada-Castillón, E. (2015). Floral visitors of Astrophytum myriostigma in La Sierra El Sarnoso, Durango, México. The Southwestern Naturalist, 60(2-3), 158-165. https://doi.org/10.1894/FMO-12.1

Martínez-Falcón, A. P., Martínez-Adriano, C. A., & Dáttilo, W. (2019). Redes complejas como herramientas para estudiar la diversidad de las interacciones ecológicas. In C. E. Moreno (Ed.), La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio (pp. 265-283). Universidad Autónoma del Estado de Hidalgo/Libermex.

McCall, C., & Primack, R. B. (1992). Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. American Journal of Botany, 79(4), 434-442. https://doi.org/10.1002/j.1537-2197.1992.tb14571.x

McDonald, C. J., & McPherson, G. R. (2005). Pollination of pima pineapple cactus (Coryphantha scheeri var robustispina): Does pollen flow limit abundance of this endangered species?. USDA Forest Service Proceedings RMRS-P-36, 529-532.

https://www.fs.usda.gov/rm/pubs/rmrs_p036/rmrs_p036_529_532.pdf

McIntosh, M. E. (2005). Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Functional Ecology, 19(4), 727-734. https://doi.org/10.1111/j.1365-2435.2005.00990.x

Murillo, M. (1981). Aspectos de la polinización por insectos en cinco géneros de cactáceas de la zona árida del estado de Querétaro. Folia Entomológica Mexicana, 48, 35-36.

Muro-Pérez, G., Romero-Méndez, U., Flores-Rivas, J. D., & Sánchez-Salas, J. (2009). Algunos aspectos sobre el nodrizaje en Astrophytum myriostigma Lem. (1839) (Cactae: Cactaceae), en la Sierra El Sarnoso, Durango, México. Boletín Nakari, 20, 43-48.

Naimi, B. (2015). usdm: uncertainty analysis for species distribution models, R package version 1. https://CRAN.R-project.org/package=usdm

Olesen, J. M., & Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83(9), 2416-2424. https://doi.org/10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2

Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19891-19896. https://doi.org/10.1073/pnas.0706375104

Quinn, G. G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge University Press.

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/

Radmacher, S., & Strohm, E. (2011). Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae). Apidologie, 42, 711-720. https://doi.org/10.1007/s13592-011-0078-9

Ramos-Robles, M., Andresen, E., & Díaz-Castelazo, C. (2016). Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability. PeerJ, 4, e2048. https://doi.org/10.7717/peerj.2048

Ren, H., Yang, L., & Liu, N. (2008). Nurse plant theory and its application in ecological restoration in lower subtropics of China. Progress in Natural Science, 18(2), 137-142. https://doi.org/10.1016/j.pnsc.2007.07.008

Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Guimarães, P. R., & Holland, J. N. (2012). Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod-Plant Interactions, 6, 289-295. https://doi.org/10.1007/s11829-011-9170-3

Robinson, K. M., Hauzy, C., Loeuille, N., & Albrectsen, B. R. (2015). Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecology and Evolution, 5(14), 2898-2915. https://doi.org/10.1002/ece3.1559

Roitberg, B. D., Sircom, J., Roitberg, C. A., van Alphen, J. J. M., & Mangel, M. (1993). Life expectancy and reproduction. Nature, 364, 108. https://doi.org/10.1038/364108a0

Romero-Méndez, U., López-Corrujedo, H., García-de la Peña, C., & Estrada-Rodríguez, J. L. (2013). Variación ecomorfológica de Astrophytum myriostigma (Caryophylalles: Cactaceae) en una población de la sierra El Sarnoso, Durango, México. Revista Chilena de Historia Natural, 86(3), 357-364. http://dx.doi.org/10.4067/S0716-078X2013000300012

Rzedowski, J. (1962). Contribuciones a la fitogeografía florística e histórica de México. I. Algunas consideraciones acerca del elemento endémico en la flora mexicana. Botanical Sciences, (27), 52-65. http://dx.doi.org/10.17129/botsci.1077

Rzedowski, J. (1986). La vegetación de México (Tercera Edición). LIMUSA.

Sánchez-Lafuente, A. M. (2002). Floral variation in the generalist perennial herb Paeonia broteroi (Paeoniaceae): differences between regions with different pollinators and herbivores. American Journal of Botany, 89(8), 1260-1269. https://doi.org/10.3732/ajb.89.8.1260

Sánchez-Reyes, U. J., Niño-Maldonado, S., Barrientos-Lozano, L., & Sandoval-Becerra, F. (2016). Influencia del clima en la distribución de Chrysomelidae (Coleoptera) en el Cañón de la Peregrina, Tamaulipas, México. Entomología Mexicana, 3, 467-473.

Sánchez-Salas, J., Muro-Pérez, G., & Romero-Méndez, U. (2004). Sierra El Sarnoso: cactáceas, guía de campo. Escuela Superior de Biología, Universidad Juárez del Estado de Durango.

Sandoval-Becerra, F. M., Niño-Maldonado, S., Sánchez-Reyes, U. J., Horta-Vega, J. V., Venegas-Barrera, C. S., & Martínez-Sánchez, I. (2017). Respuesta de la comunidad de Chrysomelidae (Coleoptera) a la variación microclimática en un fragmento de bosque de encino del noreste de México. Entomología Mexicana, 4, 421-427.

Scaven, V. L., & Rafferty, N. E. (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59(3), 418-426. https://doi.org/10.1093/czoolo/59.3.418

Diario Oficial de la Federación (DOF). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Secretaría del Medio Ambiente y Recursos Naturales (Semarnat). https://dof.gob.mx/nota_detalle_popup.php?codigo=5173091

Settele, J., Bishop, J., & Potts, S. G. (2016). Climate change impacts on pollination. Nature Plants, 2, 16092. https://doi.org/10.1038/nplants.2016.92

Slavković, F., Greenberg, A., Sadowsky, A., Zemach, H., Ish-Shalom, M., Kamenetsky, R., & Cohen, Y. (2016). Effects of applying variable temperature conditions around inflorescences on fertilization and fruit set in date palms. Scientia Horticulturae, 202, 83-90. https://doi.org/10.1016/j.scienta.2016.02.030

Steinberg, S., Dicke, M., Vet, L. E. M., & Wanningen, R. (1992). Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals: effects of bioassay set‐up, parasitoid age and experience and barometric flux. Entomologia Experimentalis et Applicata, 63(2), 163-175. https://doi.org/10.1111/j.1570-7458.1992.tb01571.x

Strong, A. W., & Williamson, P. S. (2007). Breeding system of Astrophytum asterias: an endangered cactus. The Southwestern Naturalist, 52(3), 241-346. https://doi.org/10.1894/0038-4909(2007)52[341:BSOAAA]2.0.CO;2

Tangmitcharoen, S., & Owens, J. N. (1997). Floral biology, pollination, pistil receptivity, and pollen tube growth of teak (Tectona grandis Linn f.). Annals of Botany, 79(3), 227-241. https://doi.org/10.1006/anbo.1996.0317

Tasen, W., Ogata, K., Miyajima, I., & Pianhanuruk, P. (2010). The effect of microclimate factors to floral traits on flowering season in teak (Tectona grandis) seed plantations, Thailand. Advances in Bioresearch, 1(1), 137-143.

Tasen, W., Jaitrong, W., Sittichaya, W., & Ogata, K. (2014). Relationships among insect pollinators, micro-environmental factors and fruit settings of teak (Tectona grandis LF) in seed orchards in Thailand. Thai Journal of Forestry, 33, 96-108.

Tenorio-Escandón, P., Ramírez-Hernández, A., Flores, J., Juan-Vicedo, J., & Martínez-Falcón, A. P. (2022) A systematic review on Opuntia (Cactaceae; Opuntioideae) flower-visiting insects in the world with emphasis on Mexico: implications for biodiversity conservation. Plants, 11(1), 131. https://doi.org/10.3390/plants11010131

Totland, Ø. (2001). Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology, 82(8), 2233-2244. https://doi.org/10.1890/0012-9658(2001)082[2233:EDPLAS]2.0.CO;2

US Department of Transportation and Federal Aviation Administration. (2008). Instrument flying book. United States Department of Transportation, Federal Aviation Administration, Airman Standards Branch.

Vanbergen, A. J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259. https://doi.org/10.1890/120126

Vázquez, D. P., Melian, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007), Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x

Wang, X., Liu, H., Li, X., Song, Y., Chen, L., & Jin, L. (2009). Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in Northwestern China. Environmental Entomology, 38(5), 1480-1484. https://doi.org/10.1603/022.038.0516

Welti, E. A. R., & Joern, A. (2015). Structure of trophic and mutualistic networks across broad environmental gradients. Ecology and Evolution, 5(2), 326-334. https://doi.org/10.1002/ece3.1371

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer.

Withgott, J. (2000). Botanical nursing: from deserts to shorelines, nurse effects are receiving renewed attention. BioScience, 50(6), 479-484. https://doi.org/10.1641/0006-3568(2000)050[0479:BN]2.0.CO;2