Resumen
Se analizaron las variaciones promedio anuales, estacionales y mensuales de la concentración de PM2.5 en términos de su relación con los parámetros meteorológicos y los incendios registrados en la ciudad de Guanajuato de 2016 a 2020. Las variaciones anuales de la concentración promedio de PM2.5 mostraron una relación directa entre la temperatura y la velocidad del viento, con promedios de 12.5 y 12.7, superando ligeramente los límites máximos permitidos en 2019 y 2020, respectivamente. Las variaciones estacionales promedio en la concentración de PM2.5 mostraron una relación inversa con la velocidad del viento, la precipitación y la humedad relativa. Los incendios forestales antropogénicos que ocurrieron en meses cálidos y secos se relacionan positivamente con el aumento de las concentraciones de PM2.5. Se encontró que las concentraciones bajas de PM2.5 estaban relacionadas con periodos de alta velocidad del viento, altas precipitaciones y alta humedad relativa.
Citas
Amnuaylojaroen, T., Inkom, J., Janta, R., & Surapipith, V. (2020). Long range transport of southeast Asian PM2.5 pollution to northern Thailand during high biomass burning episodes. Sustainability, 12(23), 10049. https://doi.org/10.3390/su122310049
Arenas-Monroy, J. C., García-Balderas, C. M., & Lucio-Palacio, C. R. (2012). Four new additions to the araneofauna of Guanajuato state, Mexico. Acta Zoológica Mexicana, 28(2), 491-495. https://www.redalyc.org/pdf/575/57523587023.pdf
Asch, C. (2009). “All the world's a stage”: creating Guanajuato, Mexico’s tourism image. Études Caribéennes, (13-14). https://doi.org/10.4000/etudescaribeennes.3882
Ayala-Carrillo, M., Farfán, M., Cárdenas-Nielsen, A., & Lemoine-Rodríguez, R. (2022). Are wildfires in the wildland-urban interface increasing temperatures? A land surface temperature assessment in a semi-arid Mexican city. Land, 11(12), 2105. https://doi.org/10.3390/land11122105
Barrett, B. S., & Esquivel, M. I. (2013). Variability of precipitation and temperature in Guanajuato, Mexico. Atmósfera, 26(4), 521-536. https://doi.org/10.1016/S0187-6236(13)71093-2
Bravo, A. H., Sosa, E. R., Sánchez, A. P., Jaimes, P. M., & Saavedra R. M. I. (2002). Impact of wildfires on the air quality of Mexico City, 1992-1999. Environmental Pollution, 117(2), 243-53. https://doi.org/10.1016/s0269-7491(01)00277-9
Bustamante, M. V. (2013). El trabajo en las minas de Guanajuato durante la segunda mitad del siglo XVIII. Estudios de Historia Novohispana, 48, 35-83. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-25232013000100002&lng=es&tlng=es
Carbajal, N., Pineda-Martinez, L. F., & Bautista, F. (2015). Air quality deterioration of urban areas caused by wildfires in a natural reservoir forest of Mexico. Advances in Meteorology, 912946. https://doi.org/10.1155/2015/912946
Cichowicz, R., Wielgosiński, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry, 77, 35–48. https://doi.org/10.1007/s10874-020-09401-w
Comisión Nacional Forestal (Conafor). (2021). Sistema de Predicción de Peligro de Incendios Forestales (SPPIF) de México. http://forestales.ujed.mx/incendios2/
Cruz-Núñez, X., & Bulnes-Aquino, E. (2019). Emission impact of wildfires: El Tepozteco 2016. Atmósfera, 32(2), 85-93. https://doi.org/10.20937/atm.2019.32.02.01
Diario Oficial de la Federación (DOF). (20 de agosto de 2014). Norma Oficial Mexicana NOM-025-SSA1-2014. Salud ambiental. Valores límite permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación. www.dof.gob.mx/nota_detalle.php?codigo=5357042&fecha=20/08/2014#gsc.tab=0
Diario Oficial de la Federación (DOF). (12 de abril de 2023). Norma Oficial Mexicana PROY-NOM-172-SEMARNAT-2023. Lineamientos para la obtención y comunicación del índice de calidad del aire y riesgos a la salud. https://www.dof.gob.mx/nota_detalle.php?codigo=5685417&fecha=12/04/2023#gsc.tab=0
Farfán, M., Flamenco, A., Rodríguez, C. R., Rodrigues, L., González, I., & Gao, Y. (2020). Cartografía de la probabilidad de ocurrencia a incendios forestales para el estado de Guanajuato: una aproximación antrópica de sus fuentes de ignición. Acta Universitaria, 30, e2953. http://doi.org/10.15174.au.2020.2953
Farfán, M., Domínguez, C., Espinoza, A., Jaramillo, A., Alcántara, C., Maldonado, V., Tovar, I., & Flamenco, A. (2021). Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato. Environmental Monitoring and Assessment, 193(684). https://doi.org/10.1007/s10661-021-09494-0
Fu, H., Zhang, Y., Liao, C., Mao, L., Wang, Z., & Hong, N. (2020). Investigating PM2.5 responses to other air pollutants and meteorological factors across multiple temporal scales. Scientific Reports, 10, 15639. https://doi.org/10.1038/s41598-020-72722-z
Galván, L., & Magaña, V. (2020). Forest fires in Mexico: an approach to estimate fire probabilities. International Journal of Wildland Fire, 29, 753-763. https://doi.org/10.1071/WF19057
Gobeli, D., Schloesser, H., & Pottberg, T. (2008). Met One Instruments BAM-1020 Beta Attenuation Mass Monitor US-EPA PM2.5 Federal Equivalent Method Field Test Results. Scientific Research. An Academic Publisher. https://www.scirp.org/%28S%28351jmbntvnsjt1aadkozje%29%29/reference/referencespapers.aspx?referenceid=1783120
Han, L., Sun, Z., He, J., Hao, Y., Tang, Q., Zhang, X., Zheng, C., & Miao, S. (2020). Seasonal variation in health impacts associated with visibility in Beijing, China. Science of the Total Environment, 730, 139149. https://doi.org/10.1016/j.scitotenv.2020.139149
Instituto Nacional de Estadística y Geografía (INEGI). (2014). Anuario estadístico y geográfico por entidad federativa.
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/integracion/pais/aepef/2014/702825063986.pdf
Li, C., Dai, Z., Yang, L., & Ma, Z. (2019). Spatiotemporal characteristics of air quality across Weifang from 2014-2018. International Journal of Environmental Research and Public Health, 16(17), 3122. https://doi.org/10.3390/ijerph16173122
Liang, L., & Gong, P. (2020). Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific Reports, 10, 18618. https://doi.org/10.1038/s41598-020-74524-9
Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M. S. Z. S., & Kan, H. (2019). Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, 381(8), 705-715. https://doi.org/10.1056/NEJMoa1817364
Liu, Z., Shen, L., Yan, C., Du, J., Li, Y., & Zhao, H. (2020). Analysis of the influence of precipitation and wind on PM2.5 and PM10 in the atmosphere. Advances in Meteorology, 2020. https://doi.org/10.1155/2020/5039613
Lou, C., Liu, H., Li, Y., Peng, Y., Wang, J., & Dai, L. (2017). Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environmental Monitoring and Assessment, 189(582). https://doi.org/10.1007/s10661-017-6281-z
Martínez-Arredondo, J. C., Jofre, R., Ortega, V. M., & Ramos, Y. R. (2015). Descripción de la variabilidad climática normal (1951-2010) en la cuenca del río Guanajuato, centro de México. Acta universitaria, 25(6), 3-19. https://doi.org/10.15174/au.2015.799
Nakamura, A., Nakatani, N., Maruyama, F., Fujiyoshi, S., Márquez-Reyes, R., Fernández, R., Noda, J. (2022). Characteristics of PM2.5 pollution in Osorno, Chile: Ion chromatography and meteorological data analyses. Atmosphere, 13(2), 168. https://doi.org/10.3390/atmos13020168
Ning, J., Yang, G., Liu, X., Geng, D., Wang, L., Li, Z., Zhang, Y., Di, X., Sun, L., & Yu, H., (2022). Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation - a laboratory simulation study. Environment International, 166, 107352. https://doi.org/10.1016/j.envint.2022.107352
Pacsi, S. A., & Murriel, F. A. (2018). Spatiotemporal evaluation of particulate matter PM2,5 and its relationship with the meteorological variables at the Universidad Nacional Agraria La Molina. Anales Científicos, 79(2), 334–340. http://dx.doi.org/10.21704/ac.v79i2.992
Pérez-Verdin, G., Márquez-Linares, M. A., Cortés-Ortiz, A., & Salmerón-Macías, M. (2013). Análisis espacio-temporal de la ocurrencia de incendios forestales en Durango, México. Madera y Bosques, 19, 37-58. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712013000200003&lng=es&nrm=iso
Petrie, M. D., Savage, N. P., & Stephen, H. (2022). High and low air temperatures and natural wildfire ignitions in the Sierra Nevada Region. Environments, 9(8), 96. http://dx.doi.org/10.3390/environments9080096
Piracha, A., & Chaudhary, M. T. (2022). Urban air pollution, urban heat island, and human health: a review of the literature. Sustainability, 14(15), 9234. https://doi.org/10.3390/su14159234
Puy-Alquiza, M. J., Reyes, V., Wrobel, K., Wrobel, K., Torres, J. C., & Miranda-Aviles, R. (2016). Polycyclic aromatic hydrocarbons in urban tunnels of Guanajuato city (Mexico) measured in deposited dust particles and in transplanted lichen Xanthoparmelia mexicana (Gyeln.) Hale. Environtal Science and Pollution Research, 23, 11947–11956. https://doi.org/10.1007/s11356-016-6256-6
Ravi, S., & D’Odorico, P. (2005). A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32(21), L21404. https://doi.org/10.1029/2005GL023675
Requia, W. J., Jhun, I., Coull, B. A., & Koutrakis, P. (2019). Climate impact on ambient PM2.5 elemental concentration in the United States: a trend analysis over the last 30 years. Environment International, 131, 104888. https://doi.org/10.1016/j.envint.2019.05.082
Sánchez, O. (2019). Génesis de una ciudad turística mexicana al comienzo del siglo XX: el antiguo centro minero de Guanajuato. PASOS Revista de Turismo y Patrimonio Cultural, 17(4), 827-838. https://doi.org/10.25145/j.pasos.2019.17.057
Suárez-Salas, L., Álvarez, D., Bendezú, Y., & Pomalaya, J. (2017). Caracterización química del material particulado atmosférico del centro urbano de Huancayo, Perú. Revista de la Sociedad Química del Perú, 83, 187-199. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2017000200005&lng=es&tlng=es
Subsistema de Información Geográfica, Medio Ambiente, Ordenamiento Territorial y Urbana (SEBIO-GTO). (2022). [Mapas]. http://mapas.ecologia.guanajuato.gob.mx/geoexplorer/composer/#maps/2
Tian, X., Cui, K., Sheu, H. L., Hsieh, Y. K., & Yu, F. (2021a). Effects of rain and snow on the air quality index, PM2.5 levels, and dry deposition flux of PCDD/Fs. Aerosol and Air Quality Research, 21, 210158. https://doi.org/10.4209/aaqr.210158
Tian, Y., Zhang, L., Wang, Y., Song, J., & Sun, H. (2021b). Temporal and spatial trends in particulate matter and the responses to meteorological conditions and environmental management in Xi’an, China. Atmosphere, 12(9), 1112. https://doi.org/10.3390/atmos12091112
Tzompa-Sosa, Z. A., Sullivan, A. P., Retama, A., & Kreidenweis, S. M. (2016). Contribution of biomass burning to carbonaceous aerosols in Mexico City during May 2013. Aerosol and Air Quality Research, 16, 114-124. https://doi.org/10.4209/aaqr.2015.01.0030
Wang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089-101. https://doi.org/10.3390/ijerph120809089
Wang, L., Zhang, N., Liu, Z., Sun, Y., Ji, D., & Wang, Y. (2014). The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei Region during January 2013. Advances in Meteorology, 2014, 14. https://doi.org/10.1155/2014/685971
Wang, X., Zhang, R., & Yu, W. (2019). The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. Journal of Geophysical Research: Atmosphere, 124(4), 2235–2259. https://doi.org/10.1029/2018JD029269
Woitrin-Bibot, E., Martínez-Arredondo, J. C., & Ramos-Arroyo, Y. R. (2015). Crecimiento urbano e incremento de riesgos hidrológicos en la ciudad de Guanajuato, México. L’Ordinaire des Amériques, 218. https://doi.org/10.4000/orda.1937
Xu, Y., Xue, W., Lei, Y., Zhao, Y., Cheng, S., Ren, Z., & Huang, Q. (2018). Impact of meteorological conditions on PM2.5 pollution in China during winter. Atmosphere, 9(11), 429. https://doi.org/10.3390/atmos9110429
Yang, Q., Yuan, Q., Li, T., Shen, H., & Zhang, L. (2017). The relationships between PM2.5 and meteorological factors in China: seasonal and regional variations. International Journal of Environmental Research and Public Health, 14(12), 1510. https://doi.org/10.3390/ijerph14121510
Yu, G., Wang, F., Hu, J., Liao, Y., & Liu, X. (2019). Value assessment of health losses caused by PM2.5 in Changsha City, China. International Journal of Environmental Research and Public Health, 16(11), 2063. https://doi.org/10.3390/ijerph16112063
Yu, Y., Zou, W., Jerrett, M., & Meng, Y. Y. (2022). Acute health impact of wildfire-related and conventional PM2.5 in the United States: a narrative review. Environmental Advances, 12, 100179. https://doi.org/10.1016/j.envadv.2022.100179
Zakaria, N. H., Salleh, S. A., Asmat, A., Chan, A., Isa, N. A., Hazali, N. A., & Islam, M. A. (2020). Analysis of wind speed, humidity and temperature: variability and trend in 2017. IOP Conference Series: Earth Environmental Science, 489, 012013. https://iopscience.iop.org/article/10.1088/1755-1315/489/1/012013
Zalakeviciute, R., López-Villada, J., & Rybarczyk, Y. (2018). Contrasted effects of relative humidity and precipitation on urban PM2.5 pollution in high elevation urban areas. Sustainability, 10(6), 2064. https://doi.org/10.3390/su10062064
Zamorategui-Molina, A., Gutiérrez-Ortega, N. L., Baltazar-Vera, J. C., Del Ángel-Soto, J., & Tirado-Torres, D. (2021). Carbon monoxide and particulate matter concentrations inside the road tunnels of Guanajuato City, Mexico. Aerosol and Air Quality Research, 21(10), 210039. https://doi.org/10.4209/aaqr.210039
Zhang, B., Jiao, L., Xu, G., Zhao, S., Tang, X., Zhou, Y., & Gong, C. (2018). Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorology and Atmospheric Physics, 130, 383–392. https://doi.org/10.1007/s00703-017-0526-9
Zhang, X., Ma, C., Li, X., Xiong, L., & Nie, S. (2022b). Assessing the impact of air pollution on inbound tourism along the Yangtze River across space and time. International Journal of Environmental Research and Public Health, 19(17), 10944. https://doi.org/10.3390/ijerph191710944
Zhang, X., Xiao, X., Wang, F., Brasseur, G., Chen, S., Wang, J., & Gao, M. (2022a). Observed sensitivities of PM2. 5 and O3 extremes to meteorological conditions in China and implications for the future. Environment International, 168, 107428. https://doi.org/10.1016/j.envint.2022.107428
Zhao, X., Sun, Y., Zhao, C., & Jiang, H. (2020). Impact of precipitation with different intensity on PM2.5 over typical regions of China. Atmosphere, 11(9), 906. https://doi.org/10.3390/atmos11090906
Zhou, S., Cong, L., Liu, Y., Xie, L., Zhao, S., & Zhang, Z. (2021). Rainfall intensity plays an important role in the removal of PM from the leaf surfaces. Ecological Indicators, 128, 107778. https://doi.org/10.1016/j.ecolind.2021.107778
Zhou, Y., Yue, Y., Bai, Y., & Zhang, L. (2020). Effects of rainfall on PM2.5 and PM10 in the middle reaches of the Yangtze River. Advances in Meteorology, 2020, 2398146. https://doi.org/10.1155/2020/2398146.