Vol. 34 (2024)
Artículos de Investigación

Optimización y caracterización de lipasas tolerantes a solventes de Geobacillus stearothermophilus CHI1

César Octavio García Hernández
Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México
Lucía María Cristina Ventura Canseco
Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México
Miguel Abud Archila
Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México
Sandy Luz Ovando Chacón
Instituto Tecnológico de Tuxtla Gutiérrez-Tecnológico Nacional de México
Peggy Elizabeth Alvarez Gutiérrez
CONAHCYT-Tecnológico Nacional de México-Instituto Tecnológico de Tuxtla Gutiérrez

Publicado 2024-07-24

Cómo citar

García Hernández, C. O., Ventura Canseco, L. M. C., Abud Archila, M., Ovando Chacón, S. L. ., & Alvarez Gutiérrez, P. E. (2024). Optimización y caracterización de lipasas tolerantes a solventes de Geobacillus stearothermophilus CHI1. Acta Universitaria, 34, 1–13. https://doi.org/10.15174/au.2024.4153

Resumen

Las lipasas son enzimas atractivas para su uso en biotecnología, principalmente aquellas producidas por extremófilos. Recientemente fueron aisladas bacterias termófilas Geobacillus en aguas geotermales del lago del cráter del volcán “El Chichón”, en México. En este trabajo se caracterizó y optimizó la actividad lipolítica de la cepa Geobacillus stearothermophilus CHI1. Esta cepa fue capaz de producir enzimas con máxima actividad lipolítica a 60 °C y 80 °C, con valores de pH de 5, 9 y 11, además de que demostró ser tolerante a solventes y capaz de realizar catálisis independientemente de iones metálicos. Adicionalemente, mostró mayor afinidad hacia sustratos de cadena media. Los resultados de la caracterización y optimización bioquímica sugieren la presencia de más de un tipo de actividad lipolítica presente en Geobacillus stearothermophilus CHI1. Todas estas características hacen que estas enzimas sean atractivas en procesos biotecnológicos a altas temperaturas y pH alcalino (por ejemplo, aditivos detergentes), así como para ayudar a comprender su utilidad biológica en Geobacillus.

Citas

  1. Adetunji, A. I., & Olaniran, A. O. (2021). Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal Microbiology, 52, 1257–1269. https://doi.org/10.1007/s42770-021-00503-5
  2. Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: tools for biotechnological processes. Biomolecules, 4(1), 117–139. https://doi.org/10.3390/biom4010117
  3. Barik, A., Sen, S. K., Rajhans, G., & Raut, S. (2022). Purification and optimization of extracellular lipase from a novel strain Kocuria flava Y4. International Journal of Analytical Chemistry, 2022, 1–10. https://doi.org/10.1155/2022/6403090
  4. Behera, A. R., Veluppal, A., & Dutta, K. (2019). Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominins using response surface methodology. Environmental Science and Pollution Research, 26, 34277–34284. https://doi.org/10.1007/s11356-019-04304-0
  5. Berekaa, M. M., Zaghloul, T. I., Abdel-Fattah, Y. R., Saeed, H. M., & Sifour, M. (2009). Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World Journal of Microbiology and Biotechnology, 25, 287–294. https://doi.org/10.1007/s11274-008-9891-3
  6. Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Oliart, R. (2005). Screening, purification, and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 37, 648–654. https://doi.org/10.1016/j.enzmictec.2005.06.003
  7. Christopher, L. P., Zambare, V. P., Zambare, A., Kumar, H., & Malek, L. (2015). A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. Journal of Chemical Technology & Biotechnology, 90, 2007–2016. https://doi.org/10.1002/jctb.4678
  8. Dako, E., Bernier, A. M., Dadie, A. T., & Jankowski, C. K. (2012). The problems associated with enzyme purification. In D. Ekinci (ed.), Chemical Biology (pp. 19-40). Intech. https://doi.org/10.5772/33307
  9. Eggert, T., van Pouderoyen, G., Dijkstra, B. W., & Jaeger, K. E. (2001). Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Letters, 502, 89–92. https://doi.org/10.1016/S0014-5793(01)02665-5
  10. Eggert, T., Brockmeier, U., Droge, M. J., Quax, W. J., & Jaeger, K. E. (2003). Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiology Letters, 225, 319–324. https://doi.org/10.1016/S0378-1097(03)00536-6
  11. Ekinci, A. P., Dinçer, B., Baltaş, N., & Adıgüzel, A. (2016). Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of Enzyme Inhibition and Medical Chemistry, 31, 325–331. https://doi.org/10.3109/14756366.2015.1024677
  12. Gamboa-Melendez, H., Larroude, M., Park, Y. K., Trebul, P., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Synthetic biology to improve the production of lipases and esterases (Review). Methods in Molecular Biology, 1835, 229-242. https://doi.org/10.1007/978-1-4939-8672-9_13
  13. Godoy, C. A., Pardo-Tamayo, J. S., & Barbosa, O. (2022). Microbial lipases and their potential in the production of pharmaceutical building blocks. International Journal of Molecular Science, 23, 9933.
  14. https://doi.org/10.3390/ijms23179933
  15. Lajis, A. F. B. (2018). Realm of thermoalkaline lipases in bioprocess commodities. Journal of Lipids, 2018, 1–22. https://doi.org/10.1155/2018/5659683
  16. Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535. https://doi.org/10.1007/s00792-007-0069-y
  17. Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42(1), 153–159. https://doi.org/10.1016/j.pep.2005.03.011
  18. Lim, S. Y., Steiner, J. M., & Cridge, H. (2022). Lipases: It's not just pancreatic lipase!. American Journal of Veterinary Research, 83(8), 1-8. https://doi.org/10.2460/ajvr.22.03.0048
  19. Mahfoudhi, A., Benmabrouk, S., Fendri, A., & Sayari, A. (2022). Fungal lipases as biocatalysts: a promising platform in several industrial biotechnology applications. Biotechnology and Bioengineering, 119(12), 3370-3392. https://doi.org/10.1002/bit.28245
  20. Oliart-Ros, R. M., Badillo-Zeferino, G. L., Quintana-Castro, R., Ruíz-López, I. I., Alexander-Aguilera, A., Domínguez-Chávez, J. G., Khan, A. A., Nguyen, D. D., Nadda, A. K., & Sánchez-Otero, M. G. (2021). Production and characterization of cross-linked aggregates of Geobacillus thermoleovorans CCR11 thermoalkaliphilic recombinant lipase. Molecules, 26(24), 7569. https://doi.org/10.3390/molecules26247569
  21. Ovando-Chacon, S. L., Tacias-Pascacio, V. G., Ovando-Chacon, G. E., Rosales-Quintero, A., Rodriguez-Leon, A., Ruiz-Valdiviezo, V. M., & Servin-Martinez, A. (2020). Characterization of thermophilic microorganisms in the geothermal water flow of El Chichón volcano crater lake. Water, 12, 2172. https://doi.org/10.3390/w12082172
  22. Pohanka, M. (2019). Biosensors and bioassays based on lipases, principles and applications, a review. Molecules, 24(3), 616. https://doi.org/10.3390/molecules24030616
  23. Quintana-Castro, R., Díaz, P., Valerio-Alfaro, G., García, H. S., & Oliart-Ros, R. (2009). Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase. Molecular Biotechnology, 42, 75–83. https://doi.org/10.1007/s12033-008-9136-6
  24. Rmili, F., Hadrich, B., Chamkha, M., Sayari, A., & Fendri, A. (2022). Optimization of organic solvent-tolerant lipase production by Staphylococcus capitis SH6. Immobilization for biodiesel production and biodegradation of waste greases. Preparative Biochemistry & Biotechnology, 52, 108–122. https://doi.org/10.1080/10826068.2021.1920034
  25. Salihu, A., & Alam, Z. (2015). Solvent tolerant lipases: a review. Process Biochemistry, 50(1), 86–96. https://doi.org/10.1016/j.procbio.2014.10.019
  26. Sharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014, 625258. https://doi.org/10.1155/2014/625258
  27. Sifour, M., Saeed, H. M., Zaghloul, T. I., Berekaa, M. M., & Abdel-Fatt, Y. R. (2010). Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus Strain-5. International Journal of Biological Chemistry, 4(4), 203–212. https://doi.org/10.3923/ijbc.2010.203.212
  28. Soliman, N. A., Knoll, M., Abdel-Fattah, Y. R., Schmid, R. D., & Lange, S. (2007). Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem, 42(7), 1090–1100. https://doi.org/10.1016/j.procbio.2007.05.005
  29. Vivek, K., Sandhia, G. S., & Subramaniyan, S. (2022). Extremophilic lipases for industrial applications: a general review. Biotechnology Advances, 60, 108002. https://doi.org/10.1016/j.biotechadv.2022.108002
  30. Vorderwülbecke, T., Kieslich, K., & Erdmann, H. (1992). Comparison of lipases by different assays. Enzyme and Microbial Technology, 14(8), 631–639. https://doi.org/10.1016/0141-0229(92)90038-P