Vol. 34 (2024)
Artículos de Investigación

Modelos de distribución potencial de encinos (Quercus): un estudio en la cuenca de Cuitzeo

Lucero Pimienta Ramírez
Egresada

Publicado 2024-12-11

Cómo citar

Pimienta Ramírez, L., Reyes Abrego, G. A. . ., & Ortega Rodriguez, J. M. . . (2024). Modelos de distribución potencial de encinos (Quercus): un estudio en la cuenca de Cuitzeo. Acta Universitaria, 34, 1–14. https://doi.org/10.15174/au.2024.4227

Resumen

En la cuenca de Cuitzeo, los encinos forman parte indispensable de la vegetación natural y juegan un papel crucial en el equilibrio ecológico. Sin embargo, el conocimiento ecológico de sus especies amenazadas y en peligro de extinción es limitado. El objetivo de este estudio fue modelar la distribución potencial y caracterizar las condiciones ambientales de tres especies de encinos pertenecientes al género Quercus. Utilizando el algoritmo MaxEnt y variables ambientales, se obtuvieron los perfiles geográficos y ambientales. Los resultados muestran la confiabilidad de los modelos (AUC = <1) y que las áreas potencialmente aptas para Quercus crassipes (amenazada) abarcan 2285 km², mientras que para Q. frutex (en peligro) y Q. glaucoides (amenazada) son de 742.44 km² y 254 km², respectivamente. Estas zonas idóneas se encuentran al sur, suroeste y sureste de la cuenca. Los mapas resultantes proporcionan una visión del hábitat óptimo de estas especies y pueden servir como una herramienta para su conservación.

Citas

  1. Aguilar, R., Ghilardi, A., Vega, E., Skutsch, M., & Oyama, K. (2012). Sprouting productivity and allometric relationships of two oak species managed for traditional charcoal making in central Mexico. Biomass and Bioenergy, 36, 192-207. https://doi.org/10.1016/j.biombioe.2011.10.029
  2. Alfonso-Corrado, C., Gorgonio-Ramírez, M., Aguirre-Hidalgo, V., Fuente, M. E., Jorrín-Novo, J. V., Campos, J. E., Aquino-Vázquez, C., & Clark-Tapia, R. (2024). Historical changes in abundance and structure of oak populations under management in Sierra Juárez, Oaxaca, Mexico. Forest Ecology and Management, 561, 121876. https://doi.org/10.1016/j.foreco.2024.121876
  3. Arizaga, S., Martínez-Cruz, J., Salcedo-Cabrales, M., & Bello-González, M. Á. (2009). Manual de la biodiversidad de encinos michoacanos (1a ed.). https://www.researchgate.net/profile/Juan-Cruz-7/publication/328432683_Manual_de_Encinos_Michoacanos/links/5bce20f64585152b144ea5ba/Manual-de-Encinos-Michoacanos.pdf
  4. Belfiore, A. M., Mondanaro, A., Castiglione, S., Melchionna, M., Girardi, G., Raia, P., & Di Febbraro, M. (2024). Too much of a good thing? Supplementing current species observations with fossil data to assess climate change vulnerability via ecological niche models. Biological Conservation, 291, 110495. https://doi.org/10.1016/j.biocon.2024.110495
  5. Campos, J. C., Garcia, N., Alírio, J., Arenas-Castro, S., Teodoro, A. C., & Sillero, N. (2023). Ecological niche models using MaxEnt in Google Earth engine: evaluation, guidelines and recommendations. Ecological Informatics, 76, 102147. https://doi.org/10.1016/j.ecoinf.2023.102147
  6. Drake, J. M., Randin, C., & Guisan, A. (2006). Modelling ecological niches with support vector machines. Journal of Applied Ecology, 43(3), 424-432. https://doi.org/10.1111/j.1365-2664.2006.01141.x
  7. Encina, J. A., & Villarreal, J. A. (2002). Distribución y aspectos ecológicos del género Quercus (fagaceae), en el Estado de Coahuila, México. Polibotánica, (13), 1-23. https://www.encb.ipn.mx/assets/files/encb/docs/polibotanica/revistas/pb13/enci.pdf
  8. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
  9. Hutchinson, M. F. (1998). Interpolation of rainfall data with thin plate smoothing splines - Part II: Analysis of topographic dependence. Journal of Geographic Information and Decision Analysis, 2(2), 152-167. https://www.researchgate.net/publication/228607305_Interpolation_of_Rainfall_Data_with_Thin_Plate_Smoothing_Splines_II_Analysis_of_Topographic_Dependence
  10. Instituto Nacional de Estadística y Geografía (INEGI). (2013). Conjunto de datos vectoriales de la carta de uso del suelo y vegetación. Escala 1:250 000. Serie VI. Conjunto Nacional. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825007024
  11. Kaur, A. P., Sisk, M. L., & Chauhan, P. R. (2024). A MaxEnt predictive model for palaeontological sites in the Siwalik Hills: a case study from the Pinjor Formation of the Upper Siwalik Hills near Chandigarh, northern India. Quaternary Environments and Humans, 2(5), 100017. https://doi.org/10.1016/j.qeh.2024.100017
  12. Kovach, W. L. (2004). ORIANA versión 2.02. Kovach Computing Services. https://www.kovcomp.co.uk/oriana/
  13. Liu, B., Liu, Z., Li, C., Yu, H., & Wang, H. (2024). Geographical distribution and ecological niche dynamics of Crassostrea sikamea (Amemiya, 1928) in China's coastal regions under climate change. Science of the Total Environment, 920, 171061. https://doi.org/10.1016/j.scitotenv.2024.171061
  14. Lobo, J. M., & Hortal, J. (2003). Modelos predictivos: un atajo para describir la distribución de la diversidad biológica. Ecosistemas, 12(1), 1-8. https://www.redalyc.org/pdf/540/54012119.pdf
  15. Loiselle, B. A., Jorgensen, P. M., Consiglio, T., Jiménez, I., Blake, J. G., Lohmann, L. G., & Montiel, O. M. (2008). Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes?. Journal of Biogeography, 35, 105-116. https://www.jstor.org/stable/30135994
  16. López, E., Bocco, G., Mendoza, M., Velázquez, A., & Aguirre-Rivera, J. R. (2006). Peasant emigration and land-use change at the watershed level: A GIS-based approach in Central Mexico. Agricultural Systems, 90(1), 62-78. https://doi.org/10.1016/j.agsy.2005.11.001
  17. Luna, A. L., Montalvo, L., & Rendón, B. (2003). Los usos no leñosos de los encinos en México. Boletín de la Sociedad Botánica de México, (72), 107-117. https://www.redalyc.org/pdf/577/57707204.pdf
  18. Maciel, C. A., Manríquez, N., Aguilar, P. O., & Sánchez, R. G. (2015). El área de distribución de las especies: revisión del concepto. Acta Universitaria, 2(25), 3-19. https://doi.org/10.15174/au.2015.690
  19. Manzanilla, U., Delgado-Valerio, P., Pedraza-Santos, M. E., & Molina-Sánchez, A. (2023). Modelado de idoneidad ambiental en la identificación de sitios potenciales para la toma de datos dendrocronológicos. Madera y Bosques, 29(1), 1-18. https://doi.org/10.21829/myb.2023.2912464
  20. Manzanilla, U., Martínez, C. A., & Aguirre, O. A. (2019). Historical and current spatial modeling of the sacred fir (Abies religiosa [Kunth] Schltdl. & Cham.) in the Trans-Mexican Volcanic. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 25(2), 201-217. https://doi.org/10.5154/r.rchscfa.2018.10.076
  21. Marsh, C. J., Gavish, Y., Kuemmerlen, M., Stoll, S., Haase, P., & Kunin, W. E. (2023). SDM profiling: a tool for assessing the information-content of sampled and unsampled locations for species distribution models. Ecological Modelling, 475, 110170. https://doi.org/10.1016/j.ecolmodel.2022.110170
  22. Martínez-Meléndez, N., Ramírez-Marcial, N., García-Franco, J. G., Cach-Pérez, M. J., & Martínez-Zurimendi, P. (2022). Importance of Quercus spp. for diversity and biomass of vascular epiphytes in a managed pine-oak forest in Southern Mexico. Forest Ecosystems, 9, 100034. https://doi.org/10.1016/j.fecs.2022.100034
  23. Mendoza, M. E., López, E., Geneletti, D., Pérez-Salicrup, D. R., & Salinas, V. (2011). Analysing land cover and land use change processes at watershed level: a multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Applied Geography, 31(1), 237-250. https://doi.org/10.1016/j.apgeog.2010.05.010
  24. Menon, S., Choudhury, B. I., Latif, M., & Peterson, A. T. (2010). Ecological niche modeling and local knowledge predict new populations of Gymnocladus assamicus a critically endangered tree species. Endangered Species Research, 11(2), 175-181. https://doi.org/10.3354/esr00275
  25. Mirhashemi, H., Heydari, M., Ahmadi, K., Karami, O., Kavgaci, A., Matsui, T., & Heung, B. (2023). Species distribution models of Brant's oak (Quercus brantii Lindl.): the impact of spatial database on predicting the impacts of climate change. Ecological Engineering, 194, 107038. https://doi.org/10.1016/j.ecoleng.2023.107038
  26. Moctezuma, G., & Flores, A. (2020). Importancia económica del pino (Pinus spp.) como recurso natural en México. Revista Mexicana de Ciencias Forestales, 11(60), 162-185. https://doi.org/10.29298/rmcf.v11i60.720
  27. Monterrubio, T. C., Charre, J. F., Pacheco, C., Arriaga, S., Valdez, J. D., Cancino, R., Escalona, G., Bonilla, C., & Rubio, Y. (2016). Distribución potencial histórica y contemporánea de la familia Psittacidae en México. Revista Mexicana de Biodiversidad, 87(3), 1103-1117. https://doi.org/10.1016/j.rmb.2016.06.004
  28. Morales, L. M., Vidal, Z., Rosalía, Garduño, V. H., Manuel, H. V., Cabrera, G., A, Mendoza, M., Carlón Allende, T. (2010). Área de estudio. En I. d. G. Universidad Nacional Atonoma de México (Ed.), Atlas de la cuenca del lago de Cuitzeo: Análisis de su Geografía y entorno Socioamabiental. Instituto de Geografía-UNAM/Universidad Michoacana de San Nicolás de Hidalgo.
  29. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/132/125/463-1
  30. Pan, S., Peng, D., Li, Y., Chen, Z., Zhai, Y., Liu, C., & Hong, B. (2023). Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. Journal of Integrative Agriculture, 22(7), 2138-2150. https://doi.org/10.1016/j.jia.2023.06.022
  31. Peterson, A. T. (2011). Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography, 38(5), 817-827. https://doi.org/10.1111/j.1365-2699.2010.02456.x
  32. Peterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17(1), 135-144. https://doi.org/10.1111/j.1466-8238.2007.00347.x
  33. Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
  34. Peterson, A. T., & Robins, C. R. (2003). Using ecological-niche modeling to predict barred owl invasions with implications for spotted owl conservation. Conservation Biology, 17(4), 1161-1165. https://www.researchgate.net/publication/227549433_Using_Ecological-Niche_Modeling_to_Predict_Barred_Owl_Invasions_with_Implications_for_Spotted_Owl_Conservation
  35. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  36. Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  37. Secretaría de medio Ambiente y Recursos Naturales (Semarnat). (2010). Norma Oficial Mexicana NOM 059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm
  38. Soberón, J., & Miller, C. P. (2009). Evolución de los nichos ecológicos. Miscelánea Matemática, 49, 83–99. https://www.researchgate.net/profile/Jorge-Soberon/publication/268148806_SoberonMiller2009EvolucionNichos/links/54623a250cf2c0c6aec1abfc/SoberonMiller2009EvolucionNichos.pdf
  39. Téllez, O., Farías, V., Dávila, P., Louis, J., Lira, R., & Botello, F. J. (2010). Mammalian diversity in climatic domains for Tehuacán-Cuicatlán, Biosphere Reserve, Mexico. Revista Mexicana de Biodiversidad, 81, 863-874. https://www.scielo.org.mx/pdf/rmbiodiv/v81n3/v81n3a26.pdf
  40. Vaca, M. S., Espírito, M. M., , Maldonado, Y., Oyama, K., Pérez-Solache, A., Lopes, M., Zazá, M. A., Fernandes, G. W., & Cuevas, P. (2024). Functional leaf-trait variability and herbivory in oaks along a Mexican avocado agrosystem mosaic. Flora, 310, 152437. https://doi.org/10.1016/j.flora.2023.152437
  41. Valencia, S. (2004). Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México, (75), 33-53. https://doi.org/10.17129/botsci.1692
  42. Wei, Q., Xu, Y., & Ruan, A. (2024). Spatial and temporal patterns of phytoplankton community succession and characteristics of realized niches in Lake Taihu, China. Environmental Research, 243, 117896. https://doi.org/10.1016/j.envres.2023.117896
  43. Wu, K., Wang, Y., Liu, Z., Huo, W., Cao, J., Zhao, G., & Zhang, F. (2024). Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on Maxent. Science of the Total Environment, 950, 175192. https://doi.org/10.1016/j.scitotenv.2024.175192
  44. Yang, G., Liu, N., Zhang, X., Zhou, H., Hou, Y., Wu, P., & Zhang, X. (2024). Prediction of the potential distribution of Chimonobambusa utilis (Poaceae, Bambusoideae) in China, based on the MaxEnt model. Biodiversity Data Journal, 12, e126620. https://doi.org/10.3897/BDJ.12.e126620