Synthesis, microstructural and optical characterization of LiNbO3 thin films deposited by aerosol assisted chemical vapor deposition
PDF
HTML

Supplementary Files

Untitled
Untitled
Ecuación1 eps
Untitled
Untitled

Keywords

LiNbO3 thin films
aerosol assisted chemical vapor deposition (AACVD)
piezoelectric material.

How to Cite

Murillo, J. G., Amézaga, P., Miki, M., & Ocón-Arellanes, J. A. (2014). Synthesis, microstructural and optical characterization of LiNbO3 thin films deposited by aerosol assisted chemical vapor deposition. Acta Universitaria, 24(4), 21–26. https://doi.org/10.15174/au.2014.623

Abstract

This work reports the synthesis, micro-structural characterization and optical properties of lithium niobate (LiNbO3) thin films deposited by aerosol assisted chemical vapor deposition (AACVD) on silicon substrates. The films deposited were polycrystalline, uniform, dense, non-light scattering and firmly adhered to the substrate. This was deduced from high resolution electron microscopy studies and spectral reflectance measurements. The films were not epitax­ial; however, they are considered smooth enough to be employed in optical waveguide applica­tions, since their roughness is very low compared to the wavelength of the utilizable radiation.

https://doi.org/10.15174/au.2014.623
PDF
HTML

References

Akiyama, Y., Shitanaka, K., Murakami, H., Shin, Y., Yoshida, M. & Imaishi, N. (2007). Epitaxial growth of lithium niobate film using metalorganic chemical vapor deposition. Thin Solid Films, 515, 4975-4979.


Arizmendi, L. (2004). Photonic applications of lithium niobate crystals. Physical Status Solidi (a), 201, 253-283.


Bornand, V., Huet, I., Bardeau, J. F., Chateigner, D. & Papet, P. (2002). An alternative route for the synthesis of oriented LiNbO3 thin films. Integrated Ferroelectrics, 43, 51-64.


Bornand, V. & Papet, P. (2003). Growth technologies and studies of ferroelectric thin films. Application to LiTaO3 and LiNbO3 materials. Ferroelectrics, 288 , 187-197.


Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J. & Baro, A. M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78, 013705.


International Center for Diffraction Data (2006). Joint Committee on Powder Diffraction Standards - Powder Diffraction File card 01-070- 8451, Swarthmore, PA.


Kao, M. C., Chen, H. Z., Yang, S. L., Chen, Y. C., Hsieh, P. T. & Yu, C. C. (2008). Pyroelectric Ta-modified LiNbO3 thin films and devices for thermal infrared detection. Thin Solid Films, 516(16), 5518-5522.


Kilburger, S., Millon, E., Di Bin, P., Boulle, A., Guinebretière, R. & Di Bin, C. (2010). Properties of LiNbO3 based heterostructures grown by pulsed-laser deposition for optical waveguiding application. Thin Solid Films, 518(16), 4654-4657.


Kirkby, C. J. G. & Florea, C. (2002). Dispersion properties of Lithium Niobate and tables. In K. K. Wong (Ed.), Properties of lithium niobate (pp. 119-128). London: INSPEC/IEEE.


Lee, S. Y. & Feigelson, R. S. (1998). Reduced optical losses in MOCVD grown lithium niobate thin films on sapphire by controlling nucleation density. Journal of Crystal Growth, 186(4), 594-606.


Nashimoto, K., Cima, M. J., McIntyre, P. C. & Rhine, W. E. (1995). Microstructure development of sol-gel derived epitaxial LiNbO3 thin films. Journal of Materials Research, 10(10), 2564-2572.


Nassau, K., Levinstein, H. J. & Loiacono, G. M. (1966). Ferroelectric lithium niobate. 2. Preparation of single domain crystals. Journal of Physics and Chemistry of Solids, 27(6-7), 989–996.


Paraguay, F., Estrada, D. W., Acosta, L. D. R., Andrade, E. & Miki-Yoshida, M. (1999). Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350(1-2), 192-202.


Suarez, I. & Lifante, G. (2009). Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides. Applied Physics Express, 2(2), 022202-1 022202-3.


Takahashi, M., Yamauchi, K., Yagi, T., Nishiwaki, A., Wakita, K., Ohnishi, N., Hotta, K. & Sahashi, I. (2004). Preparation and characterization of high-quality stoichiometric LiNbO3 thick films prepared by the sol–gel method. Thin Solid Films, 458(1-2), 108-113.


Terabe, K., Iyi, N., Kitamura, K. & Kimura, S. (1995). Effect of substrates on the crystallinity and morphology of sol-gel-derived epitaxial LiNbO3 films. Journal of Materials Research, 10(7), 1779-1783.


Terabe, K., Kurashima, K., Gruverman, A., Matsui, Y., Iyi, N. & Kitamura, K. (1997). Transmission electron microscopy study on epitaxial growth behaviors of sol-gel-derived LiNbO3 films. Journal of Crystal Growth, 179(3-4), 577-584.


Wang, X., Ye, Z., Li, G. & Zhao, B. (2007). Influence of substrate temperature on the growth and optical waveguide properties of oriented LiNbO3 thin films. Journal of Crystal Growth, 306(1), 62-67.


Wooten, E. L., Kissa, K. M., Yi-Yan, A., Murphy, E. J., Lafaw, D. A., Hallemeier, P. F., Maack, D., Attanasio, D. V., Fritz, D. J., McBrien, G. J. & Bossi, D. E. (2000). A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 6(1), 69-82.


Yilmaz, S. (2003). Optical properties of LiNbO3 thin films. Ferroelectrics, 293(1), 169-176.