Synthesis, characterization and in vitro antimicrobial evaluation of sulphonyl urea derivatives as potential inhibitors of beta-ketoacyl-acyl carrier protein synthase III (FabH)
HTML
PDF

Keywords

Sintasa β-cetoacil-ACP III (FabH)
caracterización de derivados de sulfonilurea
actividad antimicrobiana
in vitro
in silico. β-ketoacyl-acyl carrier protein synthase III (FabH)
sulphonyl urea derivatives characterization
antimicrobial activity
in vitro
in silico.

How to Cite

Guru Prasad, A. R., Santosh Kumar, B., Raveendra Reddy, P., Mallika, A., & Ravindranath, L. R. K. R. (2015). Synthesis, characterization and in vitro antimicrobial evaluation of sulphonyl urea derivatives as potential inhibitors of beta-ketoacyl-acyl carrier protein synthase III (FabH). Acta Universitaria, 25(1), 12–21. https://doi.org/10.15174/au.2015.658

Abstract

A series of 15 sulphonyl urea derivatives (7a-7o) containing various heterocyclic substituents were synthesized, characterized by elemental analysis, IR, 1H NMR and 13C NMR spectra and evaluated for in vitro antibacterial and antifungal activity. Molecular docking studies were performed to calculate docking scores and to propose the binding mode of sulphonyl urea derivatives with E. coli beta-ketoacyl-acp synthase III, a key enzyme that catalyzes the initial step of fatty acid biosynthesis via a type II dissociated fatty acid synthase. The results from this study revealed that the derivatives 7g, vj, 7l and 7o can become possible lead molecules for antimicrobial drug discovery. In vitro antimicrobial studies confirmed that the derivatives 7g, 7j, 7l and 7o have demonstrated better activity than the others. 

https://doi.org/10.15174/au.2015.658
HTML
PDF

References

Alsaid, M. S., El-Gazzar, M. G. & Ghorab, M. M. (2013). Anticancer activity of novel thiophenes containing a biological active diphenylsulfone, diazepin, piperidine, oxazepine, acryladehyde and sulfonamide moieties. Drug Research (Stuttg), 63(05), 263-269.


Bespalove, G. V., Sedavkina, V. A. & Kulikova, L. K. (1989). Synthesis and antimicrobial activity of 5-substituted -2-imino-pyrrolidines. Khimiko-farmatsevticheskii Zhurnal, 23(8), 949-952.


Camargo-Ordonez, A., Moreno-Reyes, C., Olazarán-Santibanez, F., Martínez-Hernández, S., Bocanegra-García, V. & Riveral, G. (2011). Efficient synthesis of sulfonamide derivatives on solid supportscatalyzed using solvent-free and microwave-assisted methods. Química Nova, 34(5), 787-791.


Cheng, X. C., Wang, Q., Fang, H., Tang, W. & Xu, W. F. (2008). Design, synthesis and preliminary evaluation of novel pyrrolidine derivatives as matrix metalloproteinase inhibitors. European Journal of Medicinal Chemistry, 43(10), 2130-2139.


Davies, C., Heath, R. J., White, S. W. & Rock, C. O. (2000). The 1.8 A crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from. Escherichia coli. Structure, 8(2), 185-195.


Dzhuraev, A. D., Karimkulov, A. M. & Makhsulov-Amanov, N. (1992). Antimicrobial properties of novel thiophene derivatives. Khimiko-farmatsevticheskii Zhurnal, 26(1), 73-75.


Huan-Qiu, L., Lei, S., Qing-Shan, L., Peng-Gang, L., Yin, L., Jing, Z. & Hai-Liang, Z. (2009). Synthesis of C(7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics. Bioorganic & Medicinal Chemistry, 17, 6264-6269.


Huang, S. M., Cheng, Y. Y., Chen, M. H., Huang, C. H., Huang, L. J., Hsu, M. H., Kuo, S. C. & Lee, K. H. (2013). Design and synthesis of 2-(3-alkylaminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-ones as potent antitumor agents. Bioinorganic and Medicinal chemistry Letters, 23(3), 699-701.


Jackowski, S., Murphy, C. M. & Cronan, Jr. J. E. (1989). Acetoacetyl-acyl carrier protein synthase; A target for antibioticthiolactamycin. Journal of Biological Chemistry, 264(13), 7624-7629.


Jackowski, S. & Rock, C. O. (1987). Acetoacetyl-acyl carrier protein synthase, A potential regulator for fatty acid biosynthesis in bacteria. Journal of Biological Chemistry, 262(16), 7627-7631.


Kumar, S. & Krishnan, K. (2012). Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi Journal of Biological Sciences, 19(1), 81-86.


Lai, C. Y. & Cronan, J. E. (2003). Beta-ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis. Journal of Biological Chemistry, 278(51), 51494-51503.


Magnuson, K., Jackowski, S., Rock, C. O. & Cronan, Jr. J. E. (1993). Regulation of fatty acid biosynthesis, Escherichia coli. Microbiological Reviews, 57(3), 522-542.


Malmström, J., Jonsson, M., Cotgreave, I. A. Hammarström, L., Sjödin, M. & Engman, L. (2001). The antioxidant profile of 2,3-dihydrobenzo[b]furan-5-ol and its 1-thio, 1-seleno and 1-telluroanalogues. Journal of American Chemical Society, 123(15), 3434-3440.


Min, J., Wang, P., Srinivasan, S., Nwachukwu, J. C., Guo, P., Huang, M., Carlson, K. E., Katzenellenbogen, J. A., Nettles, K. W. & Zhou, H. B. (2013). Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity. Journal of Medical Chemistry, 56(8), 3346-3366.


Oh, S., Kwon, B., Kong, S., Yang, G., Lee, N., Han, D., Goo, J., Siqueira-Neto, J. L., Freitas-Junior, L. H., Liuzzi, M., Lee, J. & Song, R. (2014). Synthesis and biological evaluation of 2-acetamidothiophene-3-carboxamide derivatives against Leishmania donovani. Medical Chemistry Communications, 5(2), 142-146.


Omaima, M. A. & Fatma, A. G. B. (1992). Benzo[b]thiophenes, Part I: Synthesis and Antimicrobial Activity of Benzo[b]thienyl-1,3,4-oxadiazole, -1,2,4-triazoline, and -thiazoline Derivatives. Archiv der Pharmazie, 325(2), 123–127.


Qiu, X., Choudhry, A. E., Janson, C. A. Grooms, M., Daines, R. A., Lonsdale, J. T. & Khandekar, S. S. (2005). Crystal structure and substrate specificity of the β-ketoacyl-acyl carrier protein synthase III (FabH), from Staphylococcus aureus. Protein Science, 14(8), 2087-2094.


Qiu, X., Janson, C. A., Konstantinidis, A. K., Nwagwu, S., Silverman, C., Smith, W. W., Khandekar, S., Lonsdale, J. & Abdel-Meguid, S. S. (1999). Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. Journal of Biological Chemistry, 274(51), 36465–36471.



Qiu, X., Janson, C. A., Smith, W. W., Head, M., Lonsdale, J. & Konstantinidis, A. K. (2001). Refined structures of beta-ketoacyl-acyl carrier protein synthase III. Journal of Molecular Biology, 307(1), 341-356.


Santosh Kumar, B., Raveendra Reddy P., Madhu G. & Ravindranath L. K. (2012). Synthesis, characterization and biological evaluation of chiral pyrrolidine sulphonamide mannich bases from tartaricacid. Der Chimica Sinica, 3(5), 1124-1134.


Scarsdale, J. N., Kazanina, G., He, X., Reynolds, K. A. & Wright, H. T. (2001). Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III. Journal of Biological Chemistry, 276(26), 20516-20522.


White., S. W., Zheng, J., Zhang, Y. M. & Rock, C. O. (2005). The structural biology of type II fatty acid biosynthesis. Annual Review of Biochemistry, 74, 791-831.


Wiegand, I., Hilpert, K. & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175.


Yang, Y. S., Zhang, F., Gao, C., Zhang, Y. B., Wang, X. L., Tang, J. F., Sun, J., Gong, H. B., & Zhu, H. L. (2012). Discovery and modification of sulfur-containing heterocyclic pyrazoline derivatives as potential novel class of β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(14), 4619-4624.


Yu, V. K., Detistov, O. S. & Orlov, V. D. (2008). Polycyclic systems containing 1,2,4-oxadiazole ring 2. 4-(1,2,4-Oxadiazol-5-yl)pyrrolidin-2-ones: Synthesis and prediction of biological activity. Chemistry of Heterocyclic Compounds, 44(5), 600-605.


Zareef, M., Iqbal, R. & Arfan, M. A. (2008). A novel synthesis and antimicrobial activity of 1-[(Substituted-phenyl) sulfonyl]pyrrolidin-2-ones. Journal of Enzyme Inhibition and Medical Chemistry, 23(1), 82-86.