Arabinoxylans and the remaining protein fraction relationship with the gelling capability of the polysaccharide

Abstract

Arabinoxylans (AX) are non-starch polysaccharides present in several tissues of cereal grains. These polysaccharides can form covalent gels through oxidative coupling of ferulic acid by the action of free radical-generating agents. Since the gelling capability of AX depends on their structural characteristics, the knowledge of structural characteristics and their effect on gel properties is essential for building a thorough understanding about the nature of these gels. Protein content of AX is one of such structural characteristics, whose impact on the gelling of the polysaccharide and gel properties has not been investigated in detail. Till date, it is not known how the protein is attached to the AX. This review presents research done on the arabinoxylan-protein association and the relationship of the protein fraction with the gelling capability of the polysaccharide, as well as the possible covalent binding on that association.

https://doi.org/10.15174/au.2019.1755
HTML (Español (España))
PDF (Español (España))

References

Adams, E. L., Kroon, P., Williamson, G., & Morris, V. J. (2003). Characterisation of heterogeneous arabinoxylans by direct imaging of individual molecules by atomic force microscopy. Carbohydrate Research, 338(8), 771–80.

Agger, J., Viksø-Nielsen, A., & Meyer, A. S. (2010). Enzymatic xylose release from pretreated corn bran arabinoxylan: Differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. Journal of Agricultural and Food Chemistry, 58(10), 6141–6148.

Andrewartha, K. A., Phillips, D. R., & Stone, B. A. (1979). Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydrate Research, 77(1), 191–204.

Berlanga-Reyes, C. M., Carvajal-Millán, E., Caire-Juvera, G., Rascón-Chu, A., Marquez-Escalante, J. A., & Martínez-López, A. L. (2009). Laccase induced maize bran arabinoxylan gels : Structural and rheological properties. Food Science and Biotechnology, 18(4), 1027–1029.

Berlanga-Reyes, C. M., Carvajal-Millán, E., Lizardi-Mendoza, J., Rascón-Chu, A., Marquez-Escalante, J. A., & Martínez-López, A. L. (2009). Maize arabinoxylan gels as protein delivery matrices. Molecules, 14(4), 1475–1482.

Bettge, A. D., & Morris, C. F. (2007). Oxidative gelation measurement and influence on soft wheat batter viscosity and end-use quality. Cereal Chemistry, 84(3), 237–242.

Bunzel, M. (2010). Chemistry and occurrence of hydroxycinnamate oligomers. Phytochemistry Reviews, 9(1), 47–64.

Carvajal-Millan, E., Guigliarelli, B., Belle, V., Rouau, X., & Micard, V. (2005). Storage stability of laccase induced arabinoxylan gels. Carbohydrate Polymers, 59(1), 181–188.

Carvajal-Millan, E., Rascón-Chu, A., Márquez-Escalante, J. A., Micard, V., Ponce de León, N., & Gardea, A. (2007). Maize bran gum: Extraction, characterization and functional properties. Carbohydrate Polymers, 69(1), 280–285.

Chanliaud, E., Saulnier, L., & Thibault, J. F. (1995). Alkaline extraction and characterisation of heteroxylans from maize bran. Journal of Cereal Science, 21(1), 195–203.

Cirre, J., Al-Assaf, S., Phillips, G. O., Yadav, M. P., & Hicks, K. B. (2014). Improved emulsification performance of corn fibre gum following maturation treatment. Food Hydrocolloids, 35(1), 122–128.

Ebringerová, A., Hromádková, Z., & Berth, G. (1994). Structural and molecular properties of a water-soluble arabinoxylan-protein complex isolated from rye bran. Carbohydrate Research, 264(1), 97–109.

Figueroa-Espinoza, M. C., Morel, M. H., Surget, A., & Rouau, X. (1999). Oxidative cross-linking of wheat arabinoxylans by manganese peroxidase . Comparison with laccase and horseradish peroxidase . Effect of cysteine and tyrosine on gelation. Journal of the Science of Food and Agriculture, 79(1), 460–463.

Fincher, G. B., & Stone, B. A. (1974). A water-soluble arabinogalactan– peptide from wheat endosperm. Australian Journal of Biological Science, 27(1), 117–132.

Fincher, G. B., & Stone, B. A. (1986). Cell walls and their components in cereal grain and technology. In Y. Pomeranz (Ed.), Advances in cereal science and technology (pp. 207–295). St. Paul, MN: American Association of Cereal Chemists.

Girhammar, U., & Nair, B. M. (1995). Rheological properties of water soluble non-starch polysaccharides from whole grain rye flour. Food Hydrocolloids, 9(2), 133–140.

Gruppen, H., Marseille, J. P., Voragen, A. G. J., & Hamer, R. J. (1990). On the large-scale isolation of water-insoluble cell wall material from wheat flour. Cereal Chemistry, 67(5), 512–514.

Hoseney, R. C., & Moore, A. M. (1990). Factors affecting the oxidative gelation of wheat water-solubles. Cereal Chemistry, 67(1), 81–84.

Izydorczyk, M.S., & Biliaderis, C. G. (2007). Arabinoxylans: Techonologically and nutrionally functional plant polysaccharides. In M. S. Biliaderis, C.G. y Izydorczyk (Ed.), Functional Food Carbohydrates (pp. 249–283). Boca Raton, FL.: CRC Press.

Izydorczyk, M., Biliaderis, C. G., & Bushuk, W. (1991). Comparison of the structure and composition of water-soluble pentosans from different wheat-varieties. Cereal Chemistry, 68(2), 139–144.

Izydorczyk, M. S., & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers, 28(1), 33–48.

Izydorczyk, M. S., & Dexter, J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International, 41(9), 850–868.

Lapierre, C., Pollet, B., Ralet, M. C., & Saulnier, L. (2001). The phenolic fraction of maize bran: Evidence for lignin-heteroxylan association. Phytochemistry, 57, 765–772.

Lefebvre, J., & Doublier, J. L. (2005). Rheological behavior of polysaccharides. In S. Dumitriu (Ed.), Polysaccharides: Structural Diversity and Functional Versatility (2da ed., pp. 357–394). New York: Marcel Dekker.

Mattinen, M.-L., Kruus, K., Buchert, J., Nielsen, J. H., Andersen, H. J., & Steffensen, C. L. (2005). Laccase-catalyzed polymerization of tyrosine-containing peptides. The FEBS Journal, 272(1), 3640–3650.

Morales-Ortega, A., Carvajal-Millan, E., López-Franco, Y., Rascón-Chu, A., Lizardi-Mendoza, J., Torres-Chavez, P., & Campa-Mada, A. (2013). Characterization of water extractable arabinoxylans from a spring wheat flour: rheological properties and microstructure. Molecules, 18(7), 8417–28.

Morita, S., Ito, T., & Hirano, S. (1974). A gel-forming polysaccharide containing ferulic acid in protein-free form present in an aqueous extract of wheat flour. International Journal of Biochemistry, 5(2), 201–205.

Neukom, H., Kündig, W., & Dfuel, H. (1962). The soluble wheat flour pentosans. Cereal Science, 7(4), 112–125.

Neukom, H., & Markwalder, H. U. (1978). Oxidative gelation of wheat flour pentosans: A new way of cross-linking polymers. Cereal Foods World, 23(1), 374–376.

Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J., Gardea, A., Martinez-Lopez, A. L., & Guerrero, V. (2009). Maize processing waste water arabinoxylans: Gelling capability and cross-linking content. Food Chemistry, 115(4), 1286–1290.

Niño-Medina, G., Carvajal-Millán, E., Rascon-Chu, A., Marquez-Escalante, J., Guerrero, V., & Salas-Muñoz, E. (2010). Feruloylated arabinoxylans and arabinoxylan gels: Structure, sources and applications. Phytochemistry Reviews, 9(1), 111–120.

Oudgenoeg, G., Hilhorst, R., Piersma, S. R., Boeriu, C. G., Gruppen, H., Hessing, M., … Laane, C. (2001). Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid. Journal of Agricultural and Food Chemistry, 49(5), 2503–2510.

Piber, M., & Koehler, P. (2005). Identification of dehydro-ferulic acid-tyrosine in rye and wheat: Evidence for a covalent cross-link between arabinoxylans and proteins. Journal of Agricultural and Food Chemistry, 53(13), 5276–84.

Ralph, J., Quideau, S., Grabber, J. H., & Hatfield, R. D. (1994). Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. Journal of the Chemical Society, Perkin Transactions 1, 23(1), 3485.

Rattan, O., Izydorczyk, M. S., & Biliaderis, C. G. (1994). Structure and rheological behaviour of arabinoxylans from canadian bread wheat flours. LWT-Food Science and Technology, 27(6), 550–555.

Saulnier, L., Guillon, F., Sado, P., Chateigner-Boutin, A.-L., & Rouau, X. (2013). Plant Cell Wall Polysaccharides in Storage Organs : Xylans (Food Applications). In J. Reedijk (Ed.), Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (pp. 1–32). Waltham: Elsevier Inc.

Saulnier, L., Chanliaud, E., & Thibault, J.-F. (1995a). Cell wall polysaccharide interactions in maize bran. Carbohydrate Polymers, 26(1), 279–287.

Saulnier, L., Peneau, N., & Thibault, J.-F. (1995b). Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. Journal of Cereal Science, 22(3), 259–264.

Saulnier, L., Sado, P. E., Branlard, G., Charmet, G., & Guillon, F. (2007). Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science, 46(1), 261–281.

Smith, M. M., & Hartley, R. D. (1983). Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydrate Research, 118(1), 65–80.

Strahm, A., Amadò, R., & Neukom, H. (1981). Hydroxyproline-galactoside as a protein-polysaccharide linkage in a water soluble arabinogalactan-peptide from wheat endosperm. Phytochemistry, 20(5), 1061–1063.

Van Laar, H., Tamminga, S., Williams, B. A., Verstegen, M. W., & Schols, H. (2002). Fermentation characteristics of polysaccharide fractions extracted from the cell walls of maize endosperm. Journal of the Science of Food and Agriculture, 82(1), 1369–1375.

Whistler, L., & Bemiller, J. N. (1956). Hydrolysis components from methylated corn fiber gum. Journal of American Chemical Society, 78(6), 1163–1165.

Yadav, M. P., Cooke, P., Johnston, D. B., & Hicks, K. B. (2010). Importance of protein-rich components in emulsifying properties of corn fiber gum. Cereal Chemistry, 87(2), 89–94.

Yadav, M. P., Fishman, M. L., Chau, H. K., Johnston, D. B., & Hicks, K. B. (2007a). Molecular characteristics of corn fiber gum and their influence on CFG emulsifying properties. Cereal Chemistry, 84(2), 175–180.

Yadav, M. P., Johnston, D. B., & Hicks, K. B. (2007b). Structural characterization of corn fiber gums from coarse and fine fiber and a study of their emulsifying properties. Journal of Agricultural and Food Chemistry, 55(15), 6366–6371.

Yadav, M. P., Johnston, D. B., & Hicks, K. B. (2009). Corn fiber gum: New structure/function relationships for this potential beverage flavor stabilizer. Food Hydrocolloids, 23(1), 1488–1493.

Yadav, M. P., Nuñez, A., & Hicks, K. B. (2011). Isolation, purification, and identification of protein associated with corn fiber gum. Journal of Agricultural and Food Chemistry, 59(1), 13289–13294.