Population genetics of lepidopteran (noctuidae) collected on transgenic and non-transgenic maize in Mexico

Abstract

Allele frequency of the resistance of the gene Onb3GalT5 to Cry proteins was analyzed in insect populations (Helicoverpa zea and Heliothis virescens), collected from maize transgenic and non-transgenic plants. The genetic parameters estimated in these populations were allele and genotype frequency, genetic balance and Wright statistics (Fis, Fit and Fst). Statistical analyses were performed using the package Genepop (4.0.10). Results showed that from the DNA of H. virescens, collected on non-transgenic maize, a higher number of bands were amplified in a range from 250 bp to 600 bp. In contrast, the bands amplified from insects collected on transgenic maize were in the range of 250 bp-500 bp, being the 400 bp band in both cases the most frequent, while in the DNA of Helicoverpa zea, collected on transgenic maize, three bands (350 bp, 400 bp and 450 bp) were amplified, and in H. zea, collected on non-transgenic maize, only two bands (350 bp and 400 bp) were observed. Genetic diversity in insect populations was higher than within these same populations.

https://doi.org/10.15174/au.2019.1926
HTML
PDF (Español (España))

References

Balzarini. M., Bruno, C, Peña, A., Teich, I., and J. Rienzo. (2010). Estadística en biotecnología. Aplicaciones en Info-Gen. Encuentro grupo editor. Córdoba, Argentina.

Barrows, B.D., Griffitts, J.S., and R.V. Aroian. (2006). Caenorhabditis elegans carbohydrates in bacterial toxin resistance. Methods in Enzymology, 417:340-58.

Barrows, B.D., Griffitts, J.S., and R.V. Aroian. 2007. Resistance is non-futile: resistance to Cry5B in the nematode Caenorhabditis elegans. Journal of Invertebrate Pathology, 95: 198-200.

Benedict, J.H., Altman, D.W., Umbeck, P.F., and D.R. Ring. (1992). Behavior, Growth, Survival, and Plant Injury by Heliothis virescens (F) (Lepidoptera: Noctuidae) on Transgenic Bt Cottons. Journal of Economic Entomology, 85:589-593.

Blanco, C.A., Terán-Vargas, A.P., López, J.D., and C.A. Abel. (2009). Incidence of Heliothis virescens on garbanzo varieties in Northwestern Mississippi. Southwestern Entomologist 34: 61-67.

Cañon, J., Cortes, D., Garcia-Atance, M.A., Tupac-Yupanqui, I., and S. Dunner. (2007). Distribución de la variabilidad genética en la raza de lidia. Archivos de Zootecnia, 56:391-396.

Checa, M.L., Vega, J.L., Garcia-Atance, M.A., Vallejo, M., and S. Dunner. (1998). Distribución de la variabilidad genética en poblaciones de ponis españoles: resultados preliminares. Archivos de Zootecnia, 47:169-174.

Clive, J. (2014). Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA Brief No. 49. ISAAA: Ithaca, NY.

Coates, B. S., Sumerford, D. V., Hellmich, R. L., and L. C. Lewis. (2007). A beta-1, 3-galactosyltransferase and brainiac /bre5 homolog expressed in the mid gut did not contribute to Cry 1Ab toxin resistance trait in Ostrinia nubilalis. Insect Biochemistry and Molecular Biology, 37: 346-55.

Coates, B. S., Sumerford, D. V., and L. C. Lewis. (2008). Segregation of European maize borer, Ostrinia nubilalis,aminopeptidase 1, cadherin, and bre5-like alleles, from a colony resistant to Bacillus thuringiensis Cry1Ab toxins, are not associated with F2 larval weights when fed a diet containing Cry1Ab. Journal of Insect Science, 8: 1-8.

Flint, H. M., Henneberry, T. J., Wilson, F. D., Holguin, E., Parks, N., and R. E. Buehler. (1995). The effects transgenic cotton, Gossypium hisutum L. containing Bacillus thuringiensis toxin genes for the control of the pink bollworm, Pectinophora gossypiella Saunders. and other arthopods. Southwestern Entomologist, 20: 281-292.

Francis, B. R., and L. A. Bulla. (1997). Further characterization of BT-R1, the cadherin-like receptor for Cry1Ab toxin in tobacco hornworm (Manduca sexta). mid guts. Insect Biochemistry and Molecular Biology, 27: 541-550.

Griffitts, J. S., Haslam, S. M., Yang, T., Garczynski, S. F., Mulloy, B., Morris, H., Cramer, P.S., Dell, A., Adang, M.J., and R. V. Aroian. (2005). Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 307: 922-925.

Griffitts, J. S., Huffman, D. L., Whitacre, J. L., Barrows, B. D., Marroquin, L.D., Muller, R., Brown, J. R., Hennet, T., Esko, J. D., and R. V. Aroian. (2003). Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interaction. Journal of Biological Chemistry, 278:45594-602.

Griffitts, J. S., Whitacre, J. L., and D. E. Stevens. (2001). Bt Toxin Resistance from Loss of a Putative Carbohydrate-Modifying Enzyme. Science, 293: 860-64.

Henneberry, T. J., and L. Forlow-Jech. (2000). Seasonal pink bollworm Pectinophora gossypiella (Saunders), infestations of transgenic and non-transgenic cottons. Southwestern Entomologist, 25: 273-286.

ISAAA, (2015). Global Status of Commercialized Biotech/GM Crops: 2010. http://www.isaaa.org/resources/publications/briefs/42/executivesummary/default.asp, Consulta: 02 dic, 2015.

Jurat-Fuentes, J. L., Gould, F. L., and M. J. Adang. (2002). Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 Toxins. Applied and Environmental Microbiology, 68: 5711-5717.

Knight, P. J.K., Crickmore, N., and D. J. Ellar. (1994). The receptor for Bacillus thuringiensis Cry1A(c) delta endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Molecular Microbiology, 11: 429-436.

Knowles, B. H., Knight, P. J. K., and D.J. Ellar. (1991). N-acetylgalactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proceedings of the Royal Society of London Biology, 245: 31-35.

Letourneau, D. K., B. E. Burrows. (2002). Genetically engineered organisms: Assessing environmental and human health effects. CRC Press, 33-105.

Gahan, L. J., Ma, Y. T., Coble, M. L., Gould, F., Moar, W. J., and D. G. Heckel. (2005). Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens Lepidoptera: Noctuidae. Journal of Economic Entomology, 98:1357- 1368.

Macías de la Cerda, C. G. (2006). Desarrollo de una metodología de PCR múltiple para la detección de segmentos acompañantes de transgenes en plantas. Dissertation, Universidad Autónoma de Coahuila.

Mahon, R.J., Olsen, K.M., Garsia, K. A., and Young, S. R. (2007). Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. Journal of Economic Entomology, 100:894–902.

Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S., and R.V. Aroian. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155: 1693–1699.

Masson, L., Lu, Y. J., Mazza, A., Brousseau, R., and M. J. Adang. (1995). The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. Journal of Biological Chemistry, 270: 20309-20315.

Monnerat, R., Martins, E., Macedo, C., Queiroz, P., Praça, L., Soares CM, Moreira, H. Grisi, I., Silva, J., Soberon, M. y Bravo, A. (2015). Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS ONE. 10(4): e0119544. doi: 10.1371/journal.pone.0119544. pmid:25830928.

Fernández, L. O. (2002). Tecnologías de producción de Bacillus thuringiensis. Manejo Integrado de Plagas y Agroecología, 64:110-115.

Parker, C. D., and R. G. Luttrell. (1998). Oviposición of tobacco budworm (Lepidoptera: Noctuidae) in mixed plantings of non-trasgenic and transgenic cottons expressing 8-endotoxin protein of Bacillus thuringiensis Berlinger. Southwestern Entomologist, 23: 247-257.

Piñeiro, D., Barhona, A., Eguiarte, L., Rocha, O. A., and L. R. Salas. (2008). La variabilidad genética de las especies: aspectos conceptuales y sus aplicaciones y perspectivas en México. In Piñeiro et al Capital natural de México. Vol. Conocimiento actual de la biodiversidad. CONABIO, México, 415-435.

Rabeiro, S. (2004). Cultivos Transgénicos: contexto empresarial y nuevas tendencias, en: Alimentos transgénicos: Ciencia, ambiente y mercado; un debate abierto. Muñoz (Ed). Editorial Siglo veintiuno, México, pág.: 67-86.

Shen, J., Wu, Y., Tan, J., Zhou, B., Chen, J., and F. Tan. (1993). Comparison of two monitoring methods for pyrethroid resistance in cotton bollworm (Lepidoptera: Noctuidae). Resistant Pest Management Newsletter, 5:5-7.

Song, X., Kain, W., Cassidy, D., and P. Wang. (2015). Resistance to Bacillus thuringiensis toxin Cry2Ab in Trichoplusia ni is conferred by a novel genetic mechanism. Appl Environ Microbiol 81:5184-5195. doi: 10.1128/AEM.00593-15.

Stehr, W. F. (2005). Immature insects. Ed. Kendal/Hunt Publishing Co. USA. 749 pp.

Tabashnik, B. E., Brévault, T., and Y. Carrière. (2013). Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnology, 31:510–21.

Torres-Vila, L. M., Rodríguez-Molina, M. C., Palo, E., Bielza, P., and A. Lacasa.(2000). La resistencia a insecticidas de Helicoverpa armígera Hübner en España: datos disponibles. Boletín Sanidad Vegetal-Plagas, 26: 493-501

Trigo, M. Y. C. (2009). Cultivos y alimentos transgénicos en México: El debate, los actores y las fuerzas sociopolíticas. Argumentos, 225:217-243.

Yu, S. J. (1991). Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 39:84-91.

Zuñiga, A., Angulo, A., Rebolledo, R., and M. E. Navarro. (2011). Comparación de estadios larvales de Helicoverpa zea Boddie. Lepidoptera: Noctuidae. mediante longitud de cápsula cefálica y distancia entre setas frontales. Idesia, 29: 83-86.