The trimethylsilylation route to prepare modified silica with mercapto groups to remove arsenic from water sources


The trimethylsilylation reaction (TMS) has been used in several applications as the preparation of oligosiloxanes from natural silicates. Depending on the reaction conditions, it is possible to obtain silica with interesting textural properties. Another less explored possibility is the synthesis of modified silica with different organic groups by a quite simple route. In the present study, the TMS reaction was used to obtain modified silica with mercapto groups. The adsorbent was characterized by FT-IR, solid-state NMR (29Si and 13C), thermal analysis (DTG/DTA) and nitrogen sorption and was used to remove arsenic form standard aqueous solutions (1 ppm) in a batch system. The highest arsenic adsorption capacity (68%) is favored at 20 °C, similar to values obtained in other reports.
HTML (Español (España))
PDF (Español (España))


Altundogan, H.S., Altundogan, S., Tumen, F., Bildik, M. (2000). Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manage., 20, 761-767.

Arreguín, C. F. et al. (2010). Revisión de la presencia de arsénico en el agua subterránea en México, Revista Tláloc, 45, 3.

Bailey, S.E., Olin T.J., Bricka R.M., Adrian, D.D. (1999). A review of potentially low cost sorbents for heavy metals. Water Res., 33, 2469–2474.

Caudillo, M., Sandoval, C., Cervantes, J. (2006). Synthesis of oligosiloxane Q2M6 [Q = (SiO4/2)4, M = Me3SiO2/3] from trimethylsilylation of complex silicates”, J. of Applied Organometallic Chem., 20, 382-392.

Cervantes, J., Rodriguez, E., Guzman, J., Mendoza, G., Caudillo, M. and Nájera, M. (2004). Trimethylsilylation of natural silicates: useful route toward polysiloxanes, Silicon Chemistry, 2, 185-194.

Cervantes, J., Nájera, M., Caudillo, M., Zárraga, R., Villegas, A. and Aguilera, A. F. (2006). Oligosiloxanes derived from natural silicates. En Oye, H.A., Brekken, H., Foosnaes, T., and Nygaard, L. (Ed.), Silicon for The Chemical Industry VIII (pp. 205-214). Trondheim, Norway: Tapir Uttrykk.

Chang, Y., Lee, S., Yang, J. (2009). Removal of As (III) and As (V) by natural and synthetic metal oxides, Elsevier, 346, 202-207.

Chiban, M., Zerbet, M., Carja, G. y Sinan, F. (2012). Application of low-cost adsorbents for arsenic removal. J. Environ. Chem. Eco., 4, 91-102.

Gillman, G. P., (2006). A simple technology for arsenic removal from drinking water using hydrotalcite. Science of the Total Environment, 366, 926-931

Kim, Y., Kim, Ch., Choi, I., Rengaraj, S., and Yi, J. (2004). Arsenic Removal Using Mesoporous Alumina Prepared via Templating Method. Environ. Sci. Technol., 38, 924-931.

Kuroda, K., Kato, C. (1979). Preparation of Organosilicate compounds from Phlogopite by trimethylsilylation, Clays and Clay Minerals, 26 (6), 418-422

Kuroda, K., Kato, C. (1979). Synthesis of the Trimethylsilylation derivative of Halloysite, Clays and Clay Minerals, 27 (1), 53-55.

Lenz C. (1964). Silicate minerals as sources of trimethylsilyl silicates and silicate structures analysis of sodium silicate solutions, Inorg. Chem. 4, 574-579.

Luján, J. C. (2001). Un hidrogel de hidróxido de aluminio para eliminar el arsénico del agua, J. Public Health, 9, 302-305.

Mohan, D., Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review, Journal of Hazardous Materials, 1 (42), 2-15.

Najafi, M., Rostamian, R., Rafati, A. A. (2011). Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent, Chem. Eng. J., 168 , 426–432.

Norma Oficial Mexicana NOM-127-SSA1-1994,

Organización Mundial de la Salud, (2012). Arsénico, Nota descriptiva N°372

Schwarzenbach, R. P., Egli, T. (2010). Global Water Pollution and Human Health, Annu. Rev. Environ. Resour., 35, 109-118

Steinmaus, C., Ferreccio, C., Acevedo, J. (2014). Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure, Cancer Epidemiol Biomarkers Prev. 23 (8), 1529-1535.