Desempeño de un subsolador integral biomimético para laboreo sustentable de suelos agrícolas

Resumen

El objetivo de este estudio fue evaluar el desempeño de un subsolador integral biomimético (SIB) para el laboreo sustentable del suelo, comparado con un multiarado (M), un equipo subsolador (S) y el sistema convencional de arado (AD) y rastra de discos (Ra). El trabajo se estableció en un suelo franco arenoso, en franjas de 15 m de ancho por 110 m de longitud, sin repeticiones. Se encontró que SIB y M tienen mayor anchura de trabajo, demandan más fuerza de tiro y menor consumo de combustible por hectárea (ha), por lo que estadísticamente son diferentes a AD y S. La velocidad de trabajo de SIB repercute directamente en su rendimiento operativo (ha h-1), ya que es 33.8% mayor al rendimiento de AD. En calidad y operación de los implementos, estos no produjeron cambios temporales sobre la densidad aparente (Da), diámetro medio de los agregados (DG50), resistencia a la penetración (Rp) y humedad gravimétrica (Ɵg); estadísticamente no mostraron diferencias (p ≤ 0.05), aunque en promedio Da en M fue mayor que en AD, S y SIB para todas las profundidades de muestreo. Por tanto, se concluye que SIB representa una alternativa sustentable para la preparación primaria del suelo y puede utilizarse en lugar de la labranza convencional.

https://doi.org/10.15174/au.2019.1968
HTML
PDF
XML

Citas

Aday, S.H. and Hmood, M. (1995). The field performance of the subsoiler when providing with wings and shallow tines in heavy soil. Mesopotamia, J. 7 (4): 16-20.

Aday, S. H., Haliphy, A. L. and Majeed, A.R. (2004). Field study for a modified subsoiler draft requirement in a heavy soil. Iraq J. Agric. 9 (2): 155-166.

Aday, S. H., Abdulnabi, M. A., Ndawii, D. R. (2011). The effect of the lateral distance between the shallow tines of the subsoiler on its draft requerement in a silty clay soil. Basra J. Agri. Sci, 24(1): 29-41.

Adewoyin, A. O. and Ajav, E. A. (2013). Fuel consumption of some tractor models for ploughing operations in the sandy-loam soil of Nigeria at various speeds and ploughing depth. Agricultural Engineering International: the CIGR Journal. 15 (3): 67-74.

Álvarez, R. and Steinbach, H. S. (2012). “A review of the effects of tillage systems of some soil physics properties, water content, nitrate availability and crops yields in the Argentine Pampas”. Soil & Tillage Research ISSN: 0167-1987, 104: 1-15.

Arellano, A. S., Osuna, C. E. S., Martínez, G. M. A., y Reyes, M. L. (2015). Rendimiento de frijol fertilizado con estiércol bovino en condiciones de secano. Rev. Fit. Mex. Vol. 38 (3) 313-318.

Bar, C. Y. (2005). Biomimetics-biologically inspired technologies. USA: CRS Press.

Bar, C. Y. (2006). Biomimetics-using to inspire human innovation. Bioinspiration & Biomimetics. First ed. United Kindong.

Buckingham, F. (1984). Fundamentos de funcionamiento de maquinaria (FMO), serie de cultivo. Deere & Company Service training. Moline, Illinois, E.U.A.

Cadena, Z. N. (1999). Soil Workability as a basis for advice on tillage activities. Wageningen Agricultural University. The Natherlands. pp. 29-33.

Cadena, Z. M. y Gaytán, M. T. (2004). Desempeño de implementos de labranza en términos de consumo de energía y calidad de trabajo. Revista Agraria – Nueva época-año I. 1 (3): 12-17.

Ceballos, V. D., Hernández, I O. y Vélez, L J. (2010). Efecto de la labranza sobre las propiedades físicas de un Andisol del departamento de Nariño. Revista de Agronomía. XXVII (1): 40-48.

Cabria, F., Calandroni, M. y Monterrubianesi, G. (2002). Tamaño y estabilidad de agregados y su relación con la conductividad hidráulica saturada en suelos bajo labranza convencional y praderas. Ciencias del Suelo, 20 (2): 69-80.

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). (2013). Resistencia a la penetración. Guía útil para comparar las prácticas de manejo de cultivo. CIMMYT. 1-4 p.

Chirende, B. and Li, J. (2009). Review on application of biomimetics in the design of agricultural implements. Biotechnology and molecular biology reviews. 4 (2): 42-48.

Garibaldi M.F., R. V. García, H. y E.S. Osuna, C. 2016. Subsolador integral biomimético. Campo Experimental Pabellón. CIRNOC-INIFAP. Aguascalientes, México. Folleto Técnico Núm. 68. 26p.

Gaytán, R. J. G., Muñoz, G. F., Chávez, A. N. y Capulín, Q. J. A. (2005). Evaluación comparativa de los tractores NH 6610 y JD 5715T en los aspectos técnicos, agrotécnicos y económicos. Revista ciencias técnicas agropecuarias 14 (4): 14-23.

Godwid, R. J. (2007). A Review of the effect of the implement geometry on soil failure and implement forces. Soil & Tillage Research. 97: 331-340.

Godwin, R. J., Magalhaes, P. S. G., Miller, S. M., and Fry R. K. (1987). Instrumentation to study the Force Systems and Vertical Dynamic Behaviour of Soil-engaging Implements. J. Agric. Eng. Res. 26: 301 - 310.

Godwin, R. J., Spoor, G. and Soomro, M. S. (1984). The Effect of Tine Arrangement on Soil Forces and Disturbance. J. agric. Engng Res. 30, 47-56

Guo, Z. J., Zhou, Z. L., Zhang, Y. and Li, Z. (2009). Bionic optimization research of soil cultivating component design. Sci. China Ser E-Tech Sci. 52 (4): 955-965.

Grisso, R. D., Vaughan, D. H., Roberson, G. T. (2006). Method for fuel prediction for specific tractor models. Paper No. 061089. In: The 2006 ASABE Annual International Meeting, Portland, Oregon, USA.

Hernández, E.A., Osuna, C. E. S., Reyes, M. L., Martínez R. E., y Ritz, R. C. N. Y. (2013). Sembradora de precisión, versátil y acondicionada para conservar suelo y agua. Aguascalientes, México. Folleto Técnico Núm. 60. 28p.

Hoogmoed, W. (1994). Soil Tillage. Agronomics aplications in tropical regions lecture note J. 150-207. Soil Tillage Departament, Wageningen Agricultural University. The Netherlands.

Jury, W. A., Gardner, W. R., and Gardner, W. H. (1991). Soil Physics. John Wiley & Sons. New York. 328 p.

Lobb, D. A., Huuffman, E. and Reicosky, D. C. (2007). Importance of infiltration on tillage practices in the modelling of environmental process and in the use of environmental indicators. Journal of Environmental Management. 82: 377-387.

McKyes, E. (1985). Soil Cutting and Tillage. Elsevier Science Publishing Company Inc. New York, NY, U.S.A.

Mouazen, A.M., Ramon, H. (2002). A numerical-statistical hybrid modelling scheme for evaluation of draught requirements of a subsoiler cutting a sandy loam soil, as affected by moisture content, bulk density and depth. Soil and Tillage Research, 63: 155-165.

Narro, E. (1994). Física de Suelos con enfoque agrícola. México, Trillas. 53 p.

Osuna, C. E. S. (1996). Efecto de la lluvia sobre la rugosidad superficial e infiltración del agua en el suelo bajo dos sistemas de labranza. Agric. Téc. Mex. 22 (1): 3-19.

Osuna, C. E. S., Arias, C. L. E., Núñez, -H. G. y González, C. F. (2015). Producción de forrajes de temporal con estiércol bovino y captación de agua en siembras a triple hilera. Rev. Mex. Cienc. Agríc. 6 (8): 1743-1756.

Osuna, C. E. S., Figueroa, S. B., Oleschko, K., Flores, D. Ma. De L., Martínez, M. M. R. y González, C. F. V. (2006). Efecto de la estructura del suelo sobre el desarrollo radical del maíz con dos sistemas de labranza. Agrociencia 40:27-38.

Ren, L.Q., Tong, J., Li, J, Q. and Chen, B. C. (2001). Soil adhesion and biomimetics of soil-engaging components: a review. J. Agric. Eng. Res. 79 (3): 239-263.

Reyes, R. J. J. (2016). Diseño y evaluación de un reómetro para determinar parámetros viscoplásticos de suelos. Tesis de licenciatura. Instituto Tecnológico de Pabellón de Arteaga. 63 p.

Richler, C.M., Fulton, J.P., Raper, R.L., McDonald, T.P. and Zech, W.C. (2011). Effects of transmission gear selection on tractor performance and fuel costs during deep tillage operation. Soil & Tillage Research 133: 105-111.

Roch, a R. E., Rodríguez G. J. A., Martínez P. E. y López H. J. (2012). Biomimética: innovación sustentable inspirada por la naturaleza. Investigación y Ciencia, 54: 56-61.

Rojas S. C., Osuna, C E. S. y Zitz, R. C. N. Y. (2013). Sembradora mecánica de precisión, versátil para agricultura de conservación. Campo Experimental Pabellón. CIRNOC-INIFAP. Aguascalientes, México. Folleto Técnico Núm. 51. 19 p.

Romantchik, K.E., Sandoval, A.I., Chávez, A. N., Gaytán, R. J. y Mayans, C.P. (2009). Resistencia traccional del subsolador en función del ancho de trabajo. Ingeniería Agrícola y Biosistemas 1 (1): 49-53.

Servicio de Información y Estadística Agroalimentaria y Pesquera (SIAP). (2014). Información Agrícola. Avances mensuales por estado (en línea) http://www.siap.sagarpa.gob.mx

Smith, L.A., and Williford, R. J. (1988). Power requirements of conventional, triplex, and parabolic subsoilers. Transactions of the ASAE. 31 (6): 1685-1688.

Spoor, G., Godwin, R.J. (1978). Experimental investigation into the deep loosening of soil by rigid tines. J. Agric. Eng. Res., 23 (3): 243–258.

Tong, J., Sun, J., Chen, D. and Zhang, S. (2005). Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in tillage implements. Soil and Tillage Research 80: 1-12.

Upadhyaya S., Lancas, K. P., Santo, F. A.G.and Raghuwanshi, N.S. (2001). One-pass Tillage Equipment Outstrips Conventional Tillage Method. California Agriculture. 55 (5): 44-47.

Ventura E. J., Domínguez, M.A., Norton, L. D., Ward, K., López, B. M., Tapia, N. A. (2003). A. New Reservoir Tillage System for Crop Production in Semiarid Areas. ASAE. Paper No 032315. St Joseph, Michigan.

Zhang, J., Tong, J. and Ma, Y. (2014). Simulation of bionic anti-drag subsoiler with exponential curve feature using discrete element method. Applied Mechanics and Materials. 461: 535-543.