Degree-days in a potato (Solanum tuberosum L.) crop to estimate the soil water depletion

Abstract

The objective of the study was to obtain a model to estimate the depletion factor of soil water and crop water deficit from growing degree days (Di) in potatoes. The extraction pattern of soil water was measured with tensiometers, and the root depth (Pr) was estimated during the development cycle. The Di were determined with agro-climatic data from nearby weather stations. The depletion factor of soil water (ƒ) is related to the current volumetric water content in the soil (θ), at field capacity and permanent wilting point. The relationship between Pr vs. Di was described by means of a non-linear model (r2 = 0.9786). A polynomial of third order (r2 = 0.82) was used for the relationship between the humidity depletion factor and growing Di. Based on this model, the maximum depletion factor was 0.352 for 11 Di, indicating a decreasing trend depletion factor to 1 000 Di, reaching a value of 0.292 for depletion factor, which remains roughly stable for values over 1 100 Di. The estimation of Di for the potato crop allows timely determination of the soil humidity depletion factor at the root depth.

https://doi.org/10.15174/au.2019.2033
HTML (Español (España))
PDF (Español (España))

References

Allen, R. G., Pereira, L., Raes, D. & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations, Rome, 290 p.

Autores. (2009). Comparación de métodos para estimar días grado en el cultivo de papa mediante estaciones agroclimáticas automáticas. En: Zarate Lupercio, A. et al. (Eds). Memoria del Congreso Binacional del Agua. COECyT-Coah. Saltillo, Coah. CD-ROM. 8 p.

Bamberg, J. B. & Del Río, A. H. (2007). The canon of potato science: genetic diversity and gene banks. Potato Research. 50: 207-2010.

Byrd, S. A., Rowland, D. L., Bennett, J., Zotarelli, L., Wright, D., Alva, A. & Nordgaard, J. (2015). The Relationship Between Sap Flow and Commercial Soil Water Sensor Readings in Irrigated Potato (Solanum tuberosum L.) Production. Am. Potato Jour. Res. 92(5): 582-592.

Cambouris, A. N., Zebarth, B. J., Ziadi, N. & Perron, I. (2014). Precision agriculture in potato production. Potato Research 57:249-262.

Deguchi, T., Iwama, K., Matsumoto, M. & Tanigawa, J. (2015). Effect of Varietal Difference in Root System on Hydraulic Conductance in Potatoes Under Different Soil Water Conditions and Planting Dates. Potato Re. 58(2):103-119.

Dabach, S., Lazarovitch, N,, Simunek, J. & Shani, U. (2013). Numerical investigation of irrigation scheduling based on soil water status. Irrig. Sci. 31: 27–36.

Flores-Gallardo, H., Ojeda-Bustamante, W., Flores-Magdaleno, H., Mejía-Sáenz, E. & Sifuentes-Ibarra, E. (2012). Grados día y la programación integral del riego en el cultivo de papa. Terra Lat. 30(1): 59-67.

Flores-Gallardo, H., Ojeda-Bustamante, W., Flores-Magdaleno, H., Sifuentes-Ibarra, E. & Mejía-Sáenz, E. (2013). Simulación del rendimiento de maíz (Zea mays L.) en el norte de Sinaloa usando el modelo AQUACROP. Agrociencia 47(4): 347-359.

Haverkort, A. J., Franke, A. C., Engelbrecht, F. A. & Steyn, J. M. (2013). Climate change and potato production in contrasting south african agro-ecosystems. 1. Effects on land and wáter use efficiencies. Potato Res. 56(1): 31-50.

Lavy, D., Warren, W. C. & Veilleux, R. V. (2013). Adaptation of potato to water shortage: Irrigation management enhancement of tolerance to drought and salinity. Am. J. of Potato Res. 90(2):186-206.

Macarena, B., Correa, J., Salazar, E. & Sagredo, B. (2013). Response of potato (Solanum tuberosum L.) germoplasm to water stress under in vitro conditions. Amer. J. of Potato Res. 90: 591-606.

Naglic, B., Kechavarzi, C., Coulon, F. & Pintar, M. (2014). Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrig. Sci. 32:421-436.

Parga-Torres, V. M., Zamora-Villa, V. M., González-Vázquez, V. M., García-Garza, S. J. & Villavicencio-Gutiérrez, E. E. (2005). Interacción genotipo por ambiente en clones de papa bajo riego en el Noreste de México. Agricult. Técn. en Méx. 31(1): 55-64

Pavlista, A. D. (2015). Scheduling Reduced Irrigation on ‘Atlantic’ Potato for Minimal Effect. Am. J. of Potato Res. 92(6):673-683.

Pérez-S., F. (2000). Generación de un programa de riego para el cultivo de la papa en la región de Arteaga, Coahuila. Tesis de maestría. Universidad Autónoma Agraria “Antonio Narro”. Buenavista, Saltillo, Coah. 121 p.

Reyes-Cabrera, J., Zotarelli, L., Rowland, D. L., Dukes, M. D. & Sargent, S. A. (2014). Drip as Alternative Irrigation Method for Potato in Florida Sandy Soils. Am. J. of Potato Res. 91(5):504-516.

Shock, C. C. (2007). The canon of potato science: 31.irrigation. Potato Res. 50:331-333.

Stark, J. C., Love, S. L., King, B. A. & Marshall, J. M. (2013). Potato cultivar response to seasonal drought patterns. Am. J. of Potato Res. 90(3): 207-216.

Shuhao, Q., Lingling, L., Wang, D., Zhang, J. & Pu, Y. (2013). Effects of Limited Supplemental Irrigation with Catchment Rainfall on Rain-fed Potato in Semi-arid Areas on the Western Loess Plateau, China. Am. J. of Potato Res. 90(1): 33-42.

Tijerina-Ch., L. & Crespo-P., G. (2013). Metodología para la estimación del requerimiento de riego en base a funciones de producción. En línea: www.cm.colpos.mx/meteoro/progde/agm/crieg2.doc

Villalobos-R., S., Castellanos-R., J. Z., Tijerina-Ch., L. & Crespo-P., G. (2005). Coeficientes de desarrollo del cultivo de brócoli con riego por goteo. Terra Lat. 23(3):329-333.

Waisel, Y., Eshel, A. & Kafkafi, U. Plant roots. (2002). The Hidden Half Editors. 3nd Edition. Marcel Dekker, Inc. New York. 1136 p.

Yang, D., Zhang, T., Zhang, K. & Lei, S. (2015). Extending the integrated Richards equation method to new boundary conditions: model description and validation. Agrociencia 49(7):723-737.