An easy and computable approximation for Troesch’s problem by using the Laplace Transform-Homotopy Perturbation Method

Abstract

This work introduces the Laplace Transform-Homotopy Perturbation Method (LT-HPM) in order to provide an approximate solution for Troesch’s problem. After comparing figures between exact and approximate solutions, as well as the average absolute relative error (AARE) of the approximate solutions of this research, with others reported in the literature, it can be said that the proposed solutions are accurate and handy. In conclusion, LT-HPM is a potentially useful tool.

https://doi.org/10.15174/au.2019.2065
HTML
PDF (Español (España))

References

Adomian, G. (1988). A review of decomposition method in applied mathematics. Mathematical Analysis and Applications. 135(2), 501-544. doi:10.1016/0022-247X(88)90170-9

Aminikhah, H. (2012a). The combined Laplace transform and new homotopy perturbation method for stiff systems of ODE s. Applied Mathematical Modelling, 36(8), 3638-3644. doi: 10.1016/j.apm.2011.10.014

Aminikhah, H. (2012b). Analytical Approximation to the Solution of Nonlinear Blasius Viscous Flow Equation by LTNHPM. International Scholarly Research Network ISRN Mathematical Analysis, 2012, 1-10. Article ID 957473. doi:10.5402/2012/957473

Aminikhan, H. & Hemmatnezhad, M. (2012). A novel Effective Approach for Solving Nonlinear Heat Transfer Equations. Heat Transfer- Asian Research, 41(6), 459-466.

Araghi, M.F. & Rezapour, B. (2011). Application of homotopy perturbation method to solve multidimensional schrodingers equations. International Journal of Mathematical Archive (IJMA), 2, 1–6.

Araghi, M.F. & Sotoodeh, M. (2012). An enhanced modified homotopy perturbation method for solving nonlinear volterra and fredholm integro-differential equation. World Applied Sciences Journal, 20, 1646–1655.

Assas, L.M.B. (2007). Approximate solutions for the generalized K-dV- Burgers’ equation by He’s variational iteration method. Phys. Scr., 76, 161-164. doi:10.1088/0031-8949/76/2/008

Babolian, E. & Biazar, J. (2002). On the order of convergence of Adomian method. Applied Mathematics and Computation, 130(2), 383-387. doi:10.1016/S0096-3003(01)00103-5

Bayat, M., Bayat, M. & Pakar, I. (2014). Nonlinear vibration of an electrostatically actuated microbeam. Latin American Journal of Solids and Structures, 11, 534 – 544.

Bayat, M., Pakar, I. & Emadi, A. (2013). Vibration of electrostatically actuated microbeam by means of homotopy perturbation method. Structural Engineering and Mechanics, 48, 823-831.

Belendez, A., Pascual, C., Alvarez, M.L., Méndez, D.I., Yebra M.S. & Hernández, A. (2009). High order analytical approximate solutions to the nonlinear pendulum by He’s homotopy method. Physica Scripta, 79(1), 1-24. doi: 10.1088/0031-8949/79/01/015009

Biazar, J. & Aminikhan, H. (2009). Study of convergence of homotopy perturbation method for systems of partial differential equations. Computers and Mathematics with Applications, 58(11-12), 2221-2230.

Biazar, J. & Eslami, M. (2012). A new homotopy perturbation method for solving systems of partial differential equations. Computers & Mathematics with Applications, 62, 225-234.

Biazar, J. & Ghanbari, B. (2012). The homotopy perturbation method for solving neutral functional differential equations with proportional delays. Journal of King Saud University – Science, 24, 33-37.

Biazar, J. & Ghazvini, H. (2009). Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis: Real World Applications, 10(5), 2633-2640.

Chow, T.L. (1995). Classical Mechanics. New York: John Wiley and Sons Inc.

Chowdhury, S. H. (2011). A comparison between the modified homotopy perturbation method and Adomian decomposition method for solving nonlinear heat transfer equations. Journal of Applied Sciences, 11, 1416-1420. doi:10.3923/jas.2011.1416.1420

Deeba, E., Khuri, S.A. & Xie. S. (2000). An algorithm for solving boundary value problems. Journal of Computational Physics, 159, 125-138.

El-Shaed, M. (2005). Application of He’s homotopy perturbation method to Volterra’s integro differential equation. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 163-168.

Erdogan U. & Ozis, T. (2011). A smart nonstandard finite difference scheme for second order nonlinear boundary value problems. Journal of Computational Phyciscs, 230(17), 6464-6474.

Evans, D.J. & Raslan, K.R. (2005). The Tanh function method for solving some important nonlinear partial differential. Int. J. Computat. Math., 82: 897-905. doi:10.1080/00207160412331336026

Feng, X., Mei, L. & He, G. (2007). An efficient algorithm for solving Troesch’s problem. Applied Mathematics and Computation, 189(1), 500-507.

Fereidon, A., Rostamiyan, Y., Akbarzade M. & Ganji, D.D. (2010). Application of He’s homotopy perturbation method to nonlinear shock damper dynamics. Archive of Applied Mechanics, 80(6), 641-649. doi: 10.1007/s00419-009-0334-x.

Filobello-Niño U., Vazquez-Leal, H., Castañeda-Sheissa, R., Yildirim, A., Hernandez Martinez, L., Pereyra-Díaz, D., Pérez-Sesma A. & Hoyos-Reyes, C. (2012a). An approximate solution of Blasius equation by using HPM method. Asian Journal of Mathematics and Statistics, 2012, 1-10. doi: 10.3923 /ajms.2012, ISSN 1994-5418.

Filobello-Nino, U., Vazquez-Leal, H., Khan, Y., Yildirim, A., Pereyra-Diaz, D., Perez-Sesma, A., Hernandez-Martinez, L., Sanchez-Orea, J., Castaneda-Sheissa, R. & Rabago-Bernal, F. (2012b) HPM applied to solve nonlinear circuits: a study case. Appl. Math. Sci., 6(85-88), 4331-4344.

Filobello-Nino, U., Vazquez-Leal, H., Khan, Y., Yildirim, A., Jimenez-Fernandez, V.M., Herrera-May, A.L., Castaneda-Sheissa, R. & Cervantes-Perez, J. (2013a). Perturbation method and Laplace–Padé approximation to solve nonlinear problems. Miskolc Mathematical Notes, 14(1), 89-101.

Filobello-Niño, U., Vazquez-Leal, H., Khan, Y., Perez-Sesma, A., Diaz-Sanchez, A., Herrera-May, A., Pereyra-Diaz, D., Castañeda-Sheissa, R., Jimenez-Fernandez, V.M. & Cervantes-Perez, J. (2013b). A handy exact solution for flow due to a stretching boundary with partial slip. Revista Mexicana de Física E, 59, 51-55.

Filobello-Nino, U., Vazquez-Leal, H., Khan, Y., Perez-Sesma, A., Diaz-Sanchez, A., Jimenez-Fernandez, V.M., Herrera-May, A., Pereyra-Diaz, D., Mendez-Perez J.M. & Sanchez-Orea, J. (2015) Laplace transform-homotopy perturbation method as a powerful tool to solve nonlinear problems with boundary conditions defined on finite intervals. Computational and Applied Mathematics, 34(1), 1-16. doi: 10.1007/s40314-013-0073-z.

Ganji, D.D., Mirgolbabaei, H., Miansari M. & Miansari, M. (2008). Application of homotopy perturbation method to solve linear and non-linear systems of ordinary differential equations and differential equation of order three. Journal of Applied Sciences, 8, 1256-1261. doi:10.3923/jas.2008.1256.1261.

Hassana H.N. & El-Tawil. M.A. (2011). An efficient analytic approach for solving two point nonlinear boundary value problems by homotopy analysis method. Mathematical methods in the applied sciences, 34, 977-989.

He, J.H. (1998). A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. Non-Linear Mech., 351, 37-43. doi: 10.1016/S0020-7462(98)00085-7

He, J.H. (1999). Homotopy perturbation technique. Comput. Methods Applied Mech. Eng., 178, 257-262. doi: 10.1016/S0045-7825(99)00018-3

He, J.H. (2000). A coupling method of a homotopy and a perturbation technique for nonlinear problems. International Journal of Nonlinear Mechanics, 35(1): 37-43.

He, J.H. (2006a). Homotopy perturbation method for solving boundary value problems. Physics Letters A, 350(1-2), 87-88.

He, J.H. (2006b). Some Asymptotic Methods for Strongly Nonlinear Equations. International Journal of Modern Physics B, 20(10), 1141-1199. doi: 10.1142/S0217979206033796

He, J.H. (2006c). Some Asymptotic Methods for Strongly Nonlinear Equations. International Journal of Modern Physics B, 20(10), 1141-1199.

He, J.H. (2007). Variational approach for nonlinear oscillators. Chaos, Solitons and Fractals, 34,1430-1439. doi: 10.1016/j.chaos.2006.10.026

Holmes M.H. (1995). Introduction to Perturbation Methods, Germany: Springer-Verlag,

Kazemnia, M., Zahedi, S.A., Vaezi, M. & Tolou, N. (2008). Assessment of modified variational iteration method in BVPs high-order differential equations. Journal of Applied Sciences, 8, 4192-4197. doi:10.3923/jas.2008.4192.4197

Khan, M., Gondal, M.A., Hussain, I. & Vanani, S.K. (2011). A new study between homotopy analysis method and homotopy perturbation transform method on a semi infinite domain. Mathematical and Computer Modelling, 55, 1143–1150. doi:10.1016/j.mcm.2011.09.038..

Khan, Y. & Wu, Q. (2011). Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Computers and Mathematics with Applications, 61(8), 1963-1967.

Kooch, A. & Abadyan, M. (2011). Evaluating the ability of modified Adomian decomposition method to simulate the instability of freestanding carbon nanotube: comparison with conventional decomposition method. Journal of Applied Sciences, 11, 3421-3428. doi:10.3923/jas.2011.3421.3428

Kooch, A. & Abadyan, M. (2012). Efficiency of modified Adomian decomposition for simulating the instability of nano-electromechanical switches: comparison with the conventional decomposition method. Trends in Applied Sciences Research, 7, 57-67. doi:10.3923/tasr.2012.57.67

Madani, M., Fathizadeh, M., Khan, Y. & Yildirim, A. (2011). On the coupling of the homotopy perturbation method and Laplace transformation. Mathematical and Computer Modelling, 53(9–10), 1937-1945.

Mahmoudi, J., Tolou, N., Khatami, I., Barari A. & Ganji, D.D. (2008). Explicit solution of nonlinear ZK-BBM wave equation using Exp-function method. Journal of Applied Sciences, 8, 358-363. doi:10.3923/jas.2008.358.363

Marinca, V. & Herisanu, N. (2011). Nonlinear Dynamical Systems in Engineering, (first edition). Berlin Heidelberg: Springer-Verlag.

Mirmoradia, S.H., Hosseinpoura, I., Ghanbarpour, S. & Barari. (2009). A. Application of an approximate analytical method to nonlinear Troesch, s problem. Applied Mathematical Sciences, 3(32), 1579-1585.

Noorzad, R., Poor, A.T. & Omidvar, M. (2008). Variational iteration method and homotopy-perturbation method for solving Burgers equation in fluid dynamics. Journal of Applied Sciences, 8, 369-373. doi:10.3923/jas.2008.369.373

Patel, T., Mehta, M.N. & Pradhan, V.H. (2012). The numerical solution of Burger’s equation arising into the irradiation of tumour tissue in biological diffusing system by homotopy analysis method. Asian Journal of Applied Sciences, 5, 60-66. doi:10.3923/ajaps.2012.60.66

Rashidi, M., Pour, S.M., Hayat, T. & Obaidat, S. (2012). Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Computers & Fluids, 54, 1-9.

Rashidi, M.M., Rastegari, M.T., Asadi, M. & Beg, O.A. (2012). A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chemical Engineering Communications, 199, 231-256.

Sharma, P.R. & Methi, G. (2011). Applications of homotopy perturbation method to partial differential equations. Asian Journal of Mathematics & Statistics, 4, 140-150. doi:10.3923/ajms.2011.140.150

Spiegel, M.R. (1988). Teoría y Problemas de Transformadas de Laplace (primera edición. Serie de compendios Schaum). México: MacGraw Hill.

Vanani, S. K., Heidari S. & Avaji, M. (2011). A low-cost numerical algorithm for the solution of nonlinear delay boundary integral equations. Journal of Applied Sciences, 11, 3504-3509. doi:10.3923/jas.2011.3504.3509

Vazquez-Leal, H., Filobello-Niño, U., Castañeda-Sheissa, R., Hernandez Martinez L. & Sarmiento-Reyes, A. (2012). Modified HPMs inspired by homotopy continuation methods, Mathematical Problems in Engineering, 2012, 1-20. Article ID 309123, doi: 10.155/2012/309123.

Vazquez-Leal, H., Hernandez-Martinez, L., Khan, Y., Jimenez-Fernandez, V.M., Filobello-Nino, U., Diaz-Sanchez, A., Herrera-May, A.L., Castaneda-Sheissa, R., Marin-Hernandez, A., Rabago-Bernal F. & Huerta-Chua, J. (2014). Multistage HPM applied to path tracking damped oscillations of a model for HIV infection of CD4+ T cells, British Journal of Mathematics & Computer Science, 4(8), 1035-1047. doi : 10.9734/BJMCS/2014/771.

Vazquez-Leal, H., Castañeda-Sheissa, R., Filobello-Niño, U., Sarmiento-Reyes, A. & Sánchez-Orea, J. (2012). High accurate simple approximation of normal distribution related integrals. Mathematical Problems in Engineering, 2012, 1-22. Article ID 124029, doi: 10.1155/2012/124029.

Vazquez-Leal, H., Khan, Y. Fernández-Anaya, G., Herrera-May, A., Sarmiento-Reyes, A., Filobello-Nino, U., Jimenez-Fernández V.M. & Pereyra-Díaz D. (2012). A General Solution for Troesch’s Problem. Mathematical Problems in Engineering, 2012, 1-14. Article ID 208375. doi:10.1155/2012/208375.

Vazquez-Leal, H., Khan, Y., Filobello-Nino, U., Sarmiento-Reyes, A., Diaz-Sanchez, A. & Cisneros-Sinencio, L.F. (2013). Fixed-Term Homotopy. Journal of Applied Mathematics, 2013, 1-11. Article ID 972704. doi:10.1155/2013/972704.

Vazquez-Leal, H., Sarmiento-Reyes, A., Khan, Y., Filobello-Nino, U. & Diaz-Sanchez, A. (2012) Rational Biparameter Homotopy Perturbation Method and Laplace-Padé Coupled Version, Journal of Applied Mathematics, 2012, 1-21, Article ID 923975. doi:10.1155/2012/923975.

Xu, F. (2007). A generalized soliton solution of the Konopelchenko-Dubrovsky equation using exp-function method. Zeitschrift Naturforschung - Section A Journal of Physical Sciences, 62(12), 685-688.

Zhang, L.N. & Xu, L. (2007). Determination of the limit cycle by He’s parameter expansion for oscillators in a potential. Zeitschrift für Naturforschung - Section A Journal of Physical Sciences, 62(7-8), 396-398.