CFD to analyze energy exchange by convection in a closed greenhouse with a pipe heating system

Abstract

In some locations with harsh winters, the heat stored in the soil may not be enough to heating a greenhouse, and so artificial heat must be supplied. The objective of this study was to evaluate a numerical model under local weather conditions, in Humboldt University of Berlin, Germany, during winter 2011 to analyze the air dynamics generated through a tube pipe heating system convection in a closed greenhouse, for it to be applicable in producing cold regions in Mexico. Results showed that 100 W m-2 of heat released from the soil kept the environment within acceptable ranges for plant growth from noon to evening. However, the energy lost by long-wave radiation during the night lowered the air temperature to minimal basal temperature. Heat from the pipes placed underneath the crop promoted air movement by convection, producing a uniform distribution of temperature and humidity within the plant canopy.

https://doi.org/10.15174/au.2019.2112
PDF

References

Anderson, J.D. 1997. Computational Fluid Dynamics. The basics with applications. 2nd ed. Mc. Graw-Hill. New York, USA. 328 p.

Alves, I., A. Perrier and L.S. Pereira. 1998. Aerodynamic cover and surface resistances of complete cover crops: how good is the “big leaf”?, Trans. ASAE., 41(2): 345-351.

Bakker, J.C. 1995. Greenhouse climate control: constraints and limitations. Acta Hort. 399:25–37.

Bot, G.P.A. and N.J. Van de Braak. 1995. Transport phenomena. In: Bakker, J.C.; G.P.A. Bot, H. Challa and N.J. Van de Braak (Eds.), Greenhouse Climate Control: An Integrated Approach. Wageningen Pers, Wageningen. pp 125-138.

Boulard, T., R. Haxaire, A.M. Lamrani, J.C. Roy and A. Jaffrin. 1999. Characterization and modelling of the air fluxes induced by natural ventilation in a greenhouse. Journal of Agricultural Engineering Research 74:135–144.

Boulard, T., C. Kittas, J.C. Royand and S. Wang. 2002. Convective and ventilation transfers in a greenhouse Part 2: determination of distributed greenhouse climate. Biosyst. Eng. 83: 129–147.

Brun, R. and J. lagier. 1985. Anew greenhouse structure adapted to Mediterranean growing conditions. Acta Hort. 170:37-46.

Calvert, A. and Slack, G. 1975. Effect of carbon dioxide enrichment on growth, development and yield of glasshouse tomatoes. I. Responses to controlled concentrations.. J. Hort. Sci., 50: 61–71.

Flores-Velazquez, J., E. Mejía, J.I. Montero and A. Rojano. 2011. Numerical analysis of the inner climate in a mechanically-ventilated greenhouse with three spans. Agrociencia 45(5): 545-560.

Haxaire, R. 1999. Caracterisation et modelisation des ecoulements d’air dans une serre. Ph.D. Thesis, University of Nice Sophia Antipolis, France, 1999.

Kempkes, F.L.K. and N.J van de Braak. 2000. Heating system position and vertical microclimate distribution in chrysanthemum greenhouse. Agriculture and Forest Meteorology, 104:133–142.

Kim, K., J.Y. Yoon, H.J. Kwon, J.E. Han, J.E. Son, S.W. Nam, G.A. Giacomelli and I.B Lee. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosyst. Eng. 2008, 100, 245–255.

Montero, J. I., P. Muñoz, M. C. Sánchez-Guerrero, E. Medrano, D. Piscia and P. Lorenzo. 2013. Shading screens for the improvement of the night-time climate of unheated greenhouses. Span. J. Agric. Res. 11: 32-46

Piscia, D., Montero, J.I., Baeza, E. and Bailey, B.J. 2012. A CFD greenhouse night-time condensation model. Byosistem Engineering. 111. 141-154.

Popovski, K. 1986. Location of heating installations in greenhouses for low temperature heating fluids. In: Industrial thermal effluents for Greenhouse Heating. European Cooperative Networks on Rural Energy. CNRE Bulletin No.15, pp.51–55. 1986 Procceedings of CNRE Workshop, Dublin, Ireland.

Rojano, A., R. Salazar, J. Flores, I. López, U. Schmidt and A. Medina, A. Experimental and computational modeling of venlo type greenhouse, In Fluid Dynamics in Physics, Engineering and Environmental Aplication 1st ed.; Klapp, J.; Medina, A.; Cros, A.; Vargas, C.A. Eds.; Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2013, pp. 295-300.

Roy, J.C., T. Boulard and B. Bailley. 2000. Characterisation of the heat transfer from heating tubes in a greenhouse. E-Proceedings, AGENG 2000, Warwick UK.

Tadj, N., B. Draoui, G. Theodoridis, T. Bartzanas and C. Kittas. 2007. Convective heat trasfer in a heated in a greenhouse tunnel. Acta Hort.747, ISHS. 113-120.

Teitel, M., and J. Tanny. 1998. Radiative Heat Transfer from Heating Tubes in a Greenhouse. Journal of Agricultural Engineering Research 69:185–188.

Teitel, M., I. Segal, A. Shklyar and M. Barak. 1999. A Comparison of Pipe and Air Heating Methods for Greenhouses. J. Agric. Eng. Res. 72:259-273.

H.J.M. Vollebregt, N.J. van de Braak, Analysis of Radiative and Convective Heat Exchange at Greenhouse Walls, In Journal of Agricultural Engineering Research, Volume 60, Issue 2, 1995, Pages 99-106, ISSN 0021-8634, https://doi.org/10.1006/jaer.1995.1004.

Went, F.W. 1944. Plant growth under controlled conditions. Am. J. Bot. 31, 135-150.

Williams, G.C. 1973. Crop production: Temperatures. In: The tomato manual 1st ed.; Kingham, H.G. Eds.; Grower Books, London, UK, 1973, pp. 23-24.

Wilson, K.D. 1985. Numerical studies of flow through a windbreak, J. Wind Eng. Aerodynamics, 21, 119-154.

Zamora, B., L. Molina-Niñirola, and A. Viedma. 2002. Estudio numérico del flujo inducido por convección natural en una pared trombe. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería , 18(2), 227-242.