Evaluation of antimicrobial and antiadherent properties of copper sulphate (Cu2SO4) and monoterpenes against Lactobacillus acidophilus and Streptococcus mutans


The aim of this study was to evaluate the antimicrobial activity and antibiofilm properties of copper sulfate (Cu2SO4) in association with terpenes against L. acidophilus and S. mutans strains. First, the minimum inhibitory concentration (MIC) was determined using resazurin as indicator of cellular metabolism. Synergic or antagonic effects were determined by the checkerboard method, and the inhibition of biofilm formation was determined by reduction on bacterial count. Results demonstrated that Cu2SO4 had a better antimicrobial activity than the terpenes studied, with MIC of 50 μg/mL and 100 μg/mL against L. acidophilus and S. mutans, respectively. Regardless of this antimicrobial activity, Cu2SO4 alone lacks good inhibition properties in biofilm formation. A synergistic effect was observed with geraniol for both reduction in biofilm formation and antimicrobial activity. The present study highlights the antimicrobial activity of Cu2SO4 against microorganisms related to caries development, and that its combination with terpene compounds can be an effective alternative for the control of these etiological agents.

PDF (Español (España))
XML (Español (España))


Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., & Paster, B. J. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of clinical microbiology, 46(4), 1407-1417.

Acosta Montes, S., León, C. I., & Leal, A. L. (2004). Determinación de la concentración in-hibitoria mínima en cepas de Mycobacterium tuberculosis mediante la técnica colorimétrica del alarmar azul. Infectio, 8(3), 194-202.

Afseth, J., Amsbaugh, S. M., Monell-Torrens, E., Bowen, W. H., Rølla, G., Brunelle, J., & Dahl, E. (1984). Effect of copper applied topically or in drinking water on experimental caries in rats. Caries research, 18(5), 434-439.

Aperce, C. C., Amachawadi, R., Van Bibber-Krueger, C. L., Nagaraja, T. G., Scott, H. M., Vinasco-Torre, J., & Drouillard, J. S. (2016). Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli. PloS one, 11(12), e0168983.

Badet, C., & Thebaud, N. B. (2008). Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol J, 2, 38-48.

Bueno, J. (2014). Anti-biofilm drug susceptibility testing methods: looking for new strategies against resistance mechanism. Journal of Microbial & Biochemical Technology, 3(2).

Caleffi-Ferracioli, K. R., Maltempe, F. G., Siqueira, V. L. D., & Cardoso, R. F. (2013). Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis, 93(6), 660-663.

Cruz, R., Vera, M., González, N., Faundes, N., Leiva, J., & Flores, J. (2017). Evaluación in vitro de la actividad antimicrobiana de un gel para manos con nanomoléculas de cobre. Revista argentina de dermatología, 98(1), 46-54.

Da Silva, A. P. (2015). Determinación de la actividad antibacteriana de tres variedades de limón (Citrus limón (L) Osbeck, Citrus limón (L) Osbeck en combinación con Citrus reticulata y Citrus medica L.) Frente a Staphylococcus aureus y Escherichia coli 1. Universidad, Ciencia y Sociedad, 30, 30-38.

de la Teja-Ángeles, E., Cadena-Galdós, A., Téllez-Rodríguez, J., & Durán-Gutiérrez, L. A. (2007). El pediatra ante las urgencias estomatológicas. Acta Pediátrica de México, 28(1), 21-27.

Faúndez, G., Troncoso, M., Navarrete, P., & Figueroa, G. (2004). Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC microbiology, 4(1), 19.

Flores, M., Villavicencio-Caparó, E., & Corral-Peñafiel, D. (2017). Prevalencia de caries den-tal e indice cpod en escolares de 12 años en la parroquia baños del cantón cuenca 2016. Odon-tología Activa, 1(3), 19-22.

Foley, J., & Blackwell, A. (2003). In vivo cariostatic effect of black copper cement on carious dentine. Caries research, 37(4), 254-260.

Galván Domínguez, M. Y., Hernández Quiroz, E., Márquez Cruz, E., & Garciamoreno Espi-nosa, C. D. (2013). CRT® bacteria como. Revista ADM estudiantil, 4, 8-11.

Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Ap-plied and environmental microbiology, 77(5), 1541-1547.

Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Ap-plied and environmental microbiology, 77(5), 1541-1547.

Hans, M., Mathews, S., Mücklich, F., & Solioz, M. (2016). Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases, 11(1), 018902.

Harrison, J. J., Turner, R. J., Joo, D. A., Stan, M. A., Chan, C. S., Allan, N. D. & Ceri, H. (2008). Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 52(8), 2870-2881.

Hillson, S. W. (2001). Recording dental caries in archaeological human remains. Int J Osteoarchaeol, 11:249-289.

Kanasi, E., Johansson, I., Lu, S. C., Kressin, N. R., Nunn, M. E., Kent Jr, R., & Tanner, A. C. (2010). Microbial risk markers for childhood caries in pediatricians’ offices. Journal of dental research, 89(4), 378-383.

Knezevic, P., Aleksic, V., Simin, N., Svircev, E., Petrovic, A., & Mimica-Dukic, N. (2016). Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. Journal of ethnopharmacology, 178, 125-136.

Lima Álvarez, M., Reigada Martínez, A., & Vara Delgado, A. (2000). Responsabilidad del estomatólogo general en la prevención, diagnóstico y tratamiento de la enfermedad periodon-tal. Revista Archivo Médico de Camagüey, 4(2), 1-9.

Maddi, A., & Scannapieco, F. A. (2013). Oral biofilms, oral and periodontal infections, and systemic disease. Am J Dent, 26(5), 249-54.

Martinelli, L., Rosa, J. M., Ferreira, C. D. S. B., Nascimento, G. M. D. L., Freitas, M. S., Pi-zato, L. C., & Granato, A. C. (2017). Antimicrobial activity and chemical constituents of es-sential oils and oleoresins extracted from eight pepper species. Ciência Rural, 47(5), 1-7.

Mataraci, E., & Dosler, S. (2012). In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus bio-films. Antimicrobial Agents and Chemotherapy, 56(12), 6366-6371.

Matsui, R., & Cvitkovitch, D. (2010). Acid tolerance mechanisms utilized by Streptococcus mutans. Future microbiology, 5(3), 403-417.

Menéndez, L. P., & Miranda De Zela, P. (2017). Análisis comparativo de índices de caries dentales a partir de muestras de sitios arqueológicos del Holoceno tardío de la República Ar-gentina. Revista argentina de antropología biológica, 19(2), 0-0.

Millezi, A. F., Piccoli, R. H., Oliveira, J. M., & Pereira, M. O. (2016). Anti-biofim and Anti-bacterial Effect of Essential Oils and Their Major Compounds. Journal of Essential Oil Bear-ing Plants, 19(3), 624-631.

Molina, M. V. (2015). Micro macropropagración de Mentha arvensis L. Revista Bio Ciencias, 3(3), 208-219.

Porto, T. S., Rangel, R., Furtado, N. A., De Carvalho, T. C., Martins, C. H., Veneziani, R., & Ambrosio, S. R. (2009). Pimarane-type diterpenes: antimicrobial activity against oral patho-gens. Molecules, 14(1), 191-199.

Prado, V., Vidal, R., & Durán, C. (2012). Aplicación de la capacidad bactericida del cobre en la práctica médica. Revista médica de Chile, 140(10), 1325-1332.

Ramalingam, K., Amaechi, B. T., Ralph, R. H., & Lee, V. A. (2012). Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Archives of oral biology, 57(1), 15-22.

Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Char-acterisation of copper oxide nanoparticles for antimicrobial applications. International journal of antimicrobial agents, 33(6), 587-590.

Salazar, L. A., Medina, F., Donoso, F., Barrientos, L., & Sanhueza, A. (2009). Acción antimi-crobiana in vitro de la miel de abejas sobre los microorganismos cariogénicos estreptococos del grupo mutans. International Journal of Morphology, 27(1), 77-82.

Santo, C. E., Morais, P. V., & Grass, G. (2010). Isolation and characterization of bacteria re-sistant to metallic copper surfaces. Applied and environmental microbiology, 76(5), 1341-1348.

Sikkema, J., De Bont, J. A., & Poolman, B. (1994).Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269(11), 8022-8028.

Sikkema, J., de Bont, J.A.M., & Poolman, B. (1995).Mechanisms of membrane toxicity of hydrocarbons. Microbiological reviews, 59, 201–222.

Singh, S., Fatima, Z., & Hameed, S. (2016). Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans. Archives of microbiology, 198(5), 459-472.

Subramaniam, P., & Nagarathna, J. (2012). Interdental Spacing and Dental Caries in the Pri-mary Dentition of 4–6 Year Old Children. Journal of dentistry (Tehran, Iran), 9(3), 207.

Trombetta D., Castelli F., Sarpietro M. G., Venuti V., CristaniM., Daniele C., SaijaA., MazzantiG., & BisignanoG. (2005) Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrobial Agents Chemotherapy. 49(6): 2474–2478.

Umagiliyage, A. L., Becerra-Mora, N., Kohli, P., Fisher, D. J., & Choudhary, R. (2017). An-timicrobial efficacy of liposomes containing d-limonene and its effect on the storage life of blueberries. Postharvest Biology and Technology, 128, 130-137.

Wagner, K. H., & Elmadfa, I., (2003) Biological relevance of terpenoids. Annals of Nutrition and Metabolism 47 (3-4), 95-106.

Wang, X., Willing, M. C., Marazita, M. L., Wendell, S., Warren, J. J., Broffitt, B. & Levy, S. M. (2012). Genetic and environmental factors associated with dental caries in children: the Iowa Fluoride Study. Caries research, 46(3), 177-184.