Partitioning of the pore space based on a non-hierarchical decomposition model


Bio-CAD and in-silico experimentation currently have a growing interest in biomedical applications where scientific data coming from real samples are used to evaluate physical properties. In this sense, analyzing the pore-size distribution is a demanding task to help interpret the characteristics of porous materials by partitioning it into its constituent pores. Pores are defined intuitively as local openings that can be interconnected by narrow apertures called throats that control a non-wetting phase invasion in a physical method. There are several approaches to characterize the pore space in terms of its constituent pores, several of them requiring prior computation of a skeleton. This paper presents a new approach to characterize the pore space, in terms of a pore-size distribution, which does not require the skeleton computation. Throats are identified using a new decomposition model that performs a spatial partition of the object in a non-hierarchical sweep-based way consisting of a set of disjoint boxes. This approach enables the characterization of the pore space in terms of a pore-size distribution.

computation. Throats are identified using a new decomposition model that performs a spatial partition of the object in a non-hierarchical sweep-based way consisting of a set of disjoint boxes. This approach enables the
characterization of the pore space in terms of a pore-size distribution.
XML (Español (España))


Andújar, C., Brunet, P., & Ayala, D. (2002). Topology-reducing surface simplification using a discrete solid representation. ACM Trans. on Graphics, 21(2), 88 - 105.

Biedl, T., & Genç, B. (2011). Reconstructing orthogonal polyhedra from putative vertex sets. Computational Geometry, 44(8), 409 - 417.

Biswas, A., Bhowmick, P., Sarkar, M., & Bhattacharya, B. B. (2012). A linear-time combinatorial algorithm to find the orthogonal hull of an object on the digital plane. Information Sciences, 216(0), 176 - 195.

Bournez, O., Maler, O., & Pnueli, A. (1999). Orthogonal polyhedra: Representation and computation. Hybrid Systems: Computation and Control, 46–60. (LNCS 1569, Springer)

Cleynenbreugel, T. V. (2005). Porous scaffolds for the replacement of large bone defects. a biomechanical design study (Unpublished doctoral dissertation). Katholieke Universiteit Leuven.

Cnudde, V., Cwirzen, A., Maddchaele, B., & Jacobs, P. J. S. (2009). Porosity and microstructure characterization of building stones and concretes. Engineering geology, 103, 76 - 83.

Cruz-Matı́as, I., & Ayala, D. (2014). A new lossless orthogonal simplification method for 3D objects based on bounding structures. Graphical Models, 76(4), 181 - 201.

Dang, T., & Maler, O. (1998). Reachability analysis via face lifting. In Hybrid systems: Computation and control (pp. 96–109). Springer.

Delerue, J., Lomov, S., Parnas, R., Verpoest, I., & Wevers, M. (2003). Pore network modeling of permeability for textile reinforcements. Polymer Composites, 24(3), 244 - 357.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269–271.

Dillencourt, M., Samet, H., & Tamminen, M. (1992). A general approach to connected-component labeling for arbitrary image representations. Journal of the ACM, 39(2), 253 - 280.

Eppstein, D., & Mumford, E. (2010). Steinitz theorems for orthogonal polyhedra. In Proceedings of the 2010 annual symposium on computational geometry (pp. 429–438). ACM.

Esperança, C., & Samet, H. (1998). Vertex representations and their applications in computer graphics. The Visual Computer, 14, 240-256.

Garboczi, E. J., Bentz, D. P., & Martys, N. S. (1999). Methods in the physics of porous media. In (Vol. 35, p. 1 - 41). Academic Press.

Giannitelli, S., Accoto, D., Trombetta, M., & Rainer, A. (2014). Current trends in the design of scaffolds for computer-aided tissue engineering. Acta biomaterialia, 10(2), 580–594.

Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., & Zhu1, J. (2007). Thermal evolution of permeability and microstructure in sea ice. Geophysical Research Letters, 34(34), 1-6.

Greß, A., & Klein, R. (2004). Efficient representation and extraction of 2-manifold isosurfaces using kd-trees. Graphical Models, 66, 370 - 397.

Grevera, G. J., Udupa, J. K., & Odhner, D. (2000). An Order of Magnitude Faster Isosurface Rendering in Software on a PC than Using Dedicated, General Purpose Rendering Hardware. IEEE Transactions Visualization and Computer Graphics, 6(4), 335–345.

Hilpert, M., & Miller, C. T. (2001). Pore-morphology-based simulation of drainage in totally wetting porous media. Advances in water resources, 24, 243 - 255.

Ioannidis, M., Chatzis, I., Kwiecien, M., et al. (1999). Computer enhanced core analysis for petrophysical properties. Journal of Canadian Petroleum Technology, 38(03).

Kim, B., Seo, J., & Shin, Y. (2001). Binary volume rendering using Slice-based Binary Shell. The Visual Computer, 17, 243 - 257.

Klaver, J., Desbois, G., Urai, J. L., & Littke, R. (2012). Bib-sem study of the pore space morphology in early mature posidonia shale from the hils area, germany. International Journal of Coal Geology, 103, 12–25.

Lachaud, J., & Montanvert, A. (2000). Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graphical Models, 62, 129 - 164.

LaMar, E., Hamann, B., & Joy, K. (1999). Multiresolution techniques for interactive texture-based volume visualization. In IEEE visualization’99 (p. 355-361).

León-Mancilla, B., Araiza-Téllez, M., Flores-Flores, J., & Piña-Barba, M. (2016). Physicochemical characterization of collagen scaffolds for tissue engineering. Journal of applied research and technology, 14(1), 77–85.

Liang, Z., Ioannidis, M. A., & Chatzis, I. (2000). Geometric and Topological Analysis of Three-Dimensional Porous Media: Pore Space Partitioning Based on Morphological Skeletonization. Journal of Colloid and Interface Science, 221, 13 - 24.

Lindquist, W. B., & Venkatarangan, A. (1999). Investigating 3D Geometry of Porous Media from High Resolution Images. Phys. Chem. Earth (A), 25(7), 593 - 599.

Martı́nez, J., Pla, N., & Vigo, M. (2013). Skeletal representations of orthogonal shapes. Graphical Models, 75, 189 - 207.

Park, S. C., & Choi, B. K. (2001). Boundary extraction algorithm for cutting area detection. Computer-Aided Design, 33(8), 571–579.

Quadros, W. R., Shimada, K., & Owen, S. J. (2004). 3D discrete skeleton generation by wave propagation on PR-octree for finite element mesh sizing. In Proceedings of acm symposium on solid modeling and applications (p. 327 - 332).

Rodrı́guez, J., Cruz, I., Vergés, E., & Ayala, D. (2011). A connected-component-labeling-based approach to virtual porosimetry. Graphical Models, 73, 296-310.

Samet, H. (1990). Applications of spatial data structures: Computer graphics, image processing, and GIS. Addison-Wesley Longman Publishing Co., Inc.

Schena, G., & Favretto, S. (2007). Pore space network characterization with sub-voxel definition. Transp. Porous Media, 70, 181 - 190.

Schroth, M., Istok, J., Ahearn, S., & Selker, J. (1996). Characterization of miller-similar silica sands for laboratory hydrologic studies. Soil Science Society of America Journal, 60(5), 1331–1339.

Schulz, W., Becker, J., Wiegmann, A., Mukherjee, P. P., & Wang, C. (2007). Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach. Journal of The Electrochemical Society, 154(4), B419–B426.

Silin, D. B., Jin, G., & Patzek, T. W. (2004). Robust determination of the pore space morphology in sedimentary rocks. Journal of Petroleum Technology, 69 - 70.

Stroeven, P., & Guo, Z. (2006). Modern routes to explore concrete’s complex pore space. Image Anal Stereol, 25(2), 75–86.

Theile, T., & Schneebeli, M. (2011). Algorithm to decompose three-dimensional complex structures at the necks: tested on snow structures. Image Processing, IET, 5(2), 132-140.

Thurfjell, L., Bengtsson, E., & Nordin, B. (1995). A boundary approach to fast neighborhood operations on three-dimensional binary data. CVGIP: Graphical Models and Image Processing, 57(1), 13 - 19.

Vanderhyde, J., & Szymczak, A. (2008). Topological simplification of isosurfaces in volume data using octrees. Graphical Models, 70, 16 - 31.

Vergés, E., Ayala, D., Grau, S., & Tost, D. (2008a). 3D reconstruction and quantification of porous structures. Computers & Graphics, 1(32), 438-444.

Vergés, E., Ayala, D., Grau, S., & Tost, D. (2008b). Virtual porosimeter. Computer-Aided Design and Applications, 5(1-4), 557-564.

Vigo, M., Pla, N., Ayala, D., & Martı́nez, J. (2012). Efficient algorithms for boundary extraction of 2D and 3D orthogonal pseudomanifolds. Graphical Models, 74, 61-74.

Vogel, H. J., Tölke, J., Schulz, V., Krafczyk, M., & Roth, K. (2005). Comparison of a lattice-boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone Journal, 4, 380 –388.

Wilhems, J., & Gelder, A. V. (1992, July). Octrees for faster isosurface generation. ACM Transactions on Graphics, 11(3), 201–227.

Wong, W., Shih, F. Y., & Su, T. (2006). Thinning algorithms based on quadtree and octree representations. Information Sciences, 176, 1379 - 1394.