Módulos de elasticidad y de ruptura de madera laminada de tres especies tropicales

Resumen

El correcto empleo de vigas laminadas requiere que su resistencia mecánica sea caracterizada. La investigación tuvo como objetivo determinar la densidad, el módulo de elasticidad y el módulo de ruptura en probetas de pequeñas dimensiones de madera sólida y laminada de Enterolobium cyclocarpum, Tabebuia rosea y Jouglas pyriformis. Se concluye que la madera laminada, fabricada con madera de la misma especie, incrementa su densidad. Pero, para el caso de los módulos de elasticidad y de ruptura, estos aumentan o disminuyen dependiendo de la especie y/o dependiendo de si se trata de madera sólida o laminada. Los resultados de las pruebas de flexión sugieren que la magnitud del módulo de elasticidad y del módulo de ruptura son similares a los reportados en la literatura para madera sólida y laminada, fabricadas con adhesivos de poliacetato de vinil.

https://doi.org/10.15174/au.2019.2178
PDF
XML

Citas

ASTM International. (2014). ASTM D143-14, Standard Test Methods for Small Clear Specimens of Timber. West Conshohocken, ASTM International. doi: 10.1520/D0143

ASTM International. (2015). ASTM D198-15, Standard Test Methods of Static Tests of Lumber in Structural Sizes. West Conshohocken, ASTM International. doi: 10.1520/D0198-15

Araujo Molina, O., Cerón Cardeña, M., Chan Martín, M., & Azueta García, M. (2005). Resistencia a la flexión de vigas laminadas con tres especies de madera tropical mexicana. Ingeniería, 9(1), 5-12. Recuperado el 1 de diciembre de 2017 de: http://www.redalyc.org/articulo.oa?id=46790101

Bal, C. C., & Bektaş, I. (2012). The effects of wood species, load direction, and adhesives on bending properties of laminated veneer lumber. Bioresurces, 7(3), 3104-3112. Recuperado el 1 de diciembre de: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3104_Bal_Bektas_Wood_Species_Load_Bending_Veneer_Lumber/1572

Bourreau, D., Aimene, Y., Beauchêne, J., & Thibaut, B. (2013). Feasibility of glued laminated timber beams with tropical hardwoods. European Journal of Wood and Wood Products, 71(5), 653-662. doi: 10.1007/s00107-013-0721-4

Bowyer, J. L., Shmulsky, R., & Haygreen, J. G. (2007). Forest Products and Wood Science. An Introduction. Hoboken: Wiley-Blackwell.

Erdil, Y. Z., Kasal, A., Zhang, J., Efe, H., & Dizei, T. (2009). Comparison of mechanical properties of solid wood and laminated veneer lumber fabricated from Turkish beech, Scotch pine, and Lombardy poplar. Forest Products Journal, 59(6), 55-60.

Gaff, M., & Gáborik, J. (2014). Effect of Cyclic Loading on the Elasticity of Beech Solid and Laminated Wood. Bioresources, 9(3), 4288-4296. Recuperado el 1 de diciembre de 2017 de: http://go.galegroup.com.etechconricyt.idm.oclc.org/ps/i.do?p=AONE&u=pu&id=GALE|A207462158&v=2.1&it=r&sid=summon&authCount=1

Gáborik, J., Gaff, M., Ruman, D., Zaborsky, V., Kasickova, V., & Sikora, A. (2016).

Adhesive as a Factor Affecting the Properties of Laminated Wood. Bioresources, 11(4), 10565-10574. doi: 10.15376/biores.11.4.10565-10574

Hayashi, T., & Miyatake, A. (2015). Recent research and development on sugi (Japanese cedar) structural glued laminated timber. Journal of Wood Science, 61(4), 337-342. doi: 10.1007/s10086-015-1475-x

International Organization for Standardization (ISO). (2014a). ISO 13061-2:2014. Wood. Determination of density for physical and mechanical tests. Geneva: International Organization for Standardization. Recuperado el 1 de diciembre de 2017 de: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60064

International Organization for Standardization (ISO). (2014b). ISO 13061-1:2014. Wood. Determination of moisture content for physical and mechanical tests. Geneva: International Organization for Standardization. Recuperado el 1 de diciembre de 2017 de: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60063

Keskin, H. (2009). Impact of impregnation chemical on the bending strength of solid and laminated wood materials. Materials and Design, 30(3), 796-803. doi:

1016/j.matdes.2008.05.043

Kohl, D., Long, T. H. N., & Böhm, S. (2017). Wood-based multi-material systems for technical applications compatibility of wood from emerging and developing countries. Procedia Manufacturing, 8, 611-618. doi: 10.1016/j.promfg.2017.02.078

Kohl, D., Link, P., & Böhm, S. (2016). Wood as a Technical Material for Structural Vehicle Components. Procedia CIRP, 40, 557-561. doi: 10.1016/j.procir.2016.01.133

Komariah, R. N., Hadi, Y. S., Massijaya, M. Y., & Suryana, J. (2015). Physical-Mechanical Properties of Glued Laminated Timber Made from Tropical Small-Diameter Logs Grown in Indonesia. Journal of the Korean Wood Science and Technology, 43(2), 156-167. doi: 10.5658/WOOD.2015.43.2.156

Missanjo, E., & Matsumura, J. (2016). Wood Density and Mechanical Properties of Pinus kesiya Royle ex Gordon in Malawi. Forest, 7(7), 135-146. doi:10.3390/f7070135

Nadir, Y., & Nagarajan, P. (2014). The behavior of horizontally glued laminated beams using rubber Wood. Construction and Building Materials, 55, 398-405. doi:

1016/j.conbuildmat.2014.01.032

Niklas, K. J., & Spatz, H. C. (2010). Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 97(10), 1587-1594. doi: 10.3732/ajb.1000150

Onoda, Y., Richards, A. E., & Westoby, M. (2010). The Relationship between Stem Biomechanics and Wood Density Is Modified by Rainfall in 32 Australian Woody Plant Species. The New Phytologist, 185(2), 493-501. doi: 10.1111/j.1469-8137.2009.03088.x

Silva Guzmán, J. A., Fuentes Talavera, F. J., Rodríguez Anda R., Torres Andrade, P. A., Lomelí Ramírez, M. A., Ramos Quirarte, J., Waitkus, C., & Richter, H. G. (2010). Fichas de propiedades tecnológicas y usos de maderas nativas se México e importadas. México: Comisión Nacional Forestal.

Sotomayor Castellanos, J. R. (2015). Banco FITECMA de características físico-mecánicas de maderas mexicanas. Morelia: Universidad Michoacana de San Nicolás de Hidalgo. Recuperado el 1 diciembre de 2017 de: https://www.researchgate.net/profile/Javier_Ramon_Sotomayor_Castellanos2/publication/276841418_Banco_FITECMA_de_caracteristicas_fisico-mecanicas_de_maderas_Mexicanas/links/555a2dc408aeaaff3bfabb2c/Banco-FITECMA-de-caracteristicas-fisico-mecanicas-de-maderas-Mexicanas.pdf

Sotomayor Castellanos, J. R., & Correa Jurado, S. (2016). Retención de sales de boro en la madera y su efecto en el módulo de elasticidad dinámico. Revista Científica. 24(1): 67-76. doi: 10.14483/10.14483/udistrital.jour.RC.2016.24.a9

Tamarit Urias, J. C., & López Torres, J. L. (2007). Xilotecnología de los principales árboles tropicales de México. Libro técnico No. 3. Tlahuapan: INIFAP.

Walker, J. C. F. (2006). Primary Wood Processing. Dordrecht: Springer.