Calibración de un modelo lluvia-escorrentía combinando la optimización manual y automática para un sistema de alta montaña

Resumen

La calibración de un modelo lluvia-escorrentía es un proceso complicado que puede llevar mucho tiempo y esfuerzo. Su éxito está condicionado a la experiencia del modelador y al conocimiento que se tenga del sistema físico que se desea modelar. Por ello, en este trabajo, se propone una metodología que combina la calibración manual y automática para obtener los parámetros efectivos de un modelo hidrológico aplicado a una cuenca de alta montaña. Lo anterior se debe a que calibrar simultáneamente los parámetros hidrológicos y los parámetros de fusión de nieve puede no representar adecuadamente las condiciones reales de los sistemas de alta montaña. La metodología propuesta ha sido probada usando el modelo hidrológico distribuido TETIS desarrollado en la Universitat Politècnica de València. Los resultados obtenidos son buenos al alcanzarse índices de eficiencia de Nash-Sutcliffe cercanos a 0.9 en calibración y a 0.8 en validación, con parámetros dentro de los rangos establecidos en la literatura científica.

https://doi.org/10.15174/au.2019.2187
PDF
XML

Citas

Andersen, J., Refsgaard, J.C., Jensen, K.H. (2001). Distributed hydrological modelling of the Senegal River Basin model construction and validation. Journal of Hydrology, 247, 200-214.

Chapman, T. (1970). Optimization of a rainfall-runoff model for an arid zone catchment. UNESCO Publ. 96, 126-143.

Duan, Q., Sorooshian, S., Gupta, V. (1992). Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. 28, 1015-1031.

Dawdy, D.R., O’Donnell, T. (1965). Mathematical models of catchment behavior. J. Hydraul. Div. Amer. Soc. Civ. Eng. 91, 113-137.

DeWalle, D.R., Rango, A. (2008). Principles of snow hydrology. Cambridge University Press, Cambridge.

Eckhardt, K., Arnold, J.G. (2001). Automatic calibration of a distributed catchment model. Journal of Hydrology, 251, 103-109.

Eckhardt, K., Haverkamp, S., Fohrer, N., Frede, H. (2002). SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, 27, 641-644.

Francés, F., Vélez, J.I., Vélez, J.J. (2007). Split-parameter structure for the automatic calibration of distibuted hydrological models. Journal of Hydrology, 332, 226-240.

Francés, F., Vélez, J.I., Vélez, J.J., Puricelli, M., Montoya, J.J., Múnera, J.C., Bussi, G., Medici, C., Orozco, I. (2014). Description of the distributed conceptual hydrological model tetis v.8. Universitat Politècnica de València.1-78.

Gan, T.Y., Burges, S.J. (1990). An Assessment of a Conceptual Rainfall-Runoff Model's Ability to Represent the Dynamics of Small Hypothetical Catchments 1. Models, Model Properties, and Experimental Design. Water Resour. Res., 26, 1595-1604.

Gray, D. (1970). Handbook on the principles of hydrology; with special emphasis directed to Canadian conditions in the discussions, applications, and presentation of data. Ottawa, Canada.

Gupta, V.K., Sorooshian, S. (1985). The Automatic Calibration of Conceptual Catchment Models Using Derivative-Based Optimization Algorithms. Water Resour. Res. 21, 473–485.

Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282, 104-115.

Hendrickson, J.D., Sorooshian, S., Brazil, L.E. (1988). Comparison of Newton-Type and Direct Search Algorithms for Calibration of Conceptual Rainfall-Runoff Models. Water Resour. Res. 24, 691–700.

Jansson, P., Hock, R., Schneider, T. (2003). The concept of glacier storage: a review. Journal of Hydrology, 282, 116-129.

Jeton, A., Dettinger, M., Smith, J. (1996). Potential effects of climate change on streamflow, Eastern and Western slopes of the Sierra Nevada, California and Nevada 44.

Johnston, P.R., Pilgrim, D.H. (1976). Parameter Optimization for Watershed Models. Water Resour. Res. 12, 477–486.

Klemes, V. (1988). A hydrological perspective. Journal of Hydrology, 100, 3-28.

Madsen, H. (2000). Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235, 276-288.

Monro, J. (1971). Direct search optimization in mathematical modeling and a watershed model application. Tech. Memo., NWS Hydro-12, Natl. Oceanic and Atmos. Admin., U.S. Dep. of Commerc, Silver Spring.

Moreda, F., Cong, S., Schaake, J., Smith, M. (2006). Gridded rainfall estimation for distributed modeling in western mountainous areas. AGU Spring Meeting Abstracts 23, 32.

Nash, J., Sutcliff, J. (1970). River flow forecasting through conceptual models part I a discussion of principles. Journal of Hydrology, 10 (3), 282-290.

Pandey, G.R., Cayan, D.R., Georgakakos, K.P. (1999). Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 2019–12030.

Peterson, J.R., Hamlett, J.M. (1998). Hydrologic Calibration of The Swat Model In A Watershed Containing Fragipan Soils. Journal of the American Water Resources Association, 34, 531-544.

Pickup, G. (1977). Testing of efficiencies of algorithms and strategies for automatic calibration of rainfall-runoff models. Hydrogeol. Sci. Bull. 22, 257-274.

Refsgaars, J.C., Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32, 2189-2202.

Senarath, S., Ogden, F.L., Downer, C.W., Sharif, H.O. (2000). On the calibration and verification of two-dimentional distribute, Hortonian, continuous watershed models. Water Resources Research, 36, 1495-1510.

Shamir, E., Georgakakos, K.P. (2007). Estimating snow depletion curves for American River basins using distributed snow modeling. Journal of Hydrology, 334, 162-173.

Shamir, E., Georgakakos, K.P. (2006). Distributed snow accumulation and ablation modeling in the American River basin. Advances in Water Resources, 29, 558-570.

Smith, M., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., Mizukami, N., Kitzmiller, D., Ding, F., Reed, S., Anderson, E., Schaake, J., Zhang, Y., Andrassian, V., Perrin, C., Coron, L., Valry, A., Khakbaz, B., Sorooshian, S., Behrangi, A., Imam, B., Hsu, K.-L., Todini, E., Coccia, G., Mazzetti, C., Andres, E. O., Francs, F., Orozco, I., Hartman, R., Henkel, A., Fickenscher, P., Staggs, S. (2013).The distributed model intercomparison project phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology. 507, 300-329.

Sorooshian, S., Duan, Q., Gupta, V.K. (1993). Calibration of Rainfall-Runoff Models: Application of Global Optimization to the Sacramento Soil Moisture Accounting Model. Water Resources Research, 29, 1185–1194.

Sorooshian, S. (1981). Parameter estimation of rainfall-runoff models with heteroscedastic streamflow errors - The noninformative data case. Journal of Hydrology. 52, 127-138.

Vélez, J.J. (2003). Desarrollo de un modelo distribuido de predicción en tiempo real para eventos de crecidas. Avances en Recursos Hidráulicos, 18, 25-35.

Vélez, J.J., Puricelli, M., López, F., Francés, F. (2009). Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Eart System Sciences, 13, 229-246.

Yapo, P.O., Gupta, H.V., Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204, 83-97.