Assessment of the compatibility of Metarhizium anisopliae germination process with essential oils


Metarhizium anisopliae (Hypocreales: Clavicipitaceae) is a fungus used in the control of insect pests, as well as various essential oils. These resources could be used in combination to control a pest if they are compatible. For this reason, the objective of this work was to determine the compatibility of the fungus M. anisopliae with various essential oils by evaluating the conidia germination process. Five strains of M. anisopliae and ten essential oils were used and compared in compatibility tests. The five fungal strains and the essential oils of garlic, cypress, eucalyptus, lemon, and orange were compatible. The essential oils of cinnamon, clove and geranium were incompatible, and the oils of lavender and peppermint had a variable compatibility depending on the concentration. The germination process of the conidia of the five strains was affected differently by the action of the essential oils tested.
PDF (Español (España))


Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., & Cháfer, M. (2016). Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids, 61, 233-240. doi:10.1016/j.foodhyd.2016.05.008.

Alves, S. B. (1998). Fungos entomopatogênicos. In S. B. Alves (Ed.), Controle Microbiano de Insetos (2° ed., Vol. 1, pp. 289-381). Piracicaba, SP, Brasil: FEALQ.

Ambrosio, C. M. S., de Alencar, S. M., de Sousa, R. L. M., Moreno, A. M., & Da Gloria, E. M. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products, 97, 128-136. doi: 10.1016/j.indcrop.2016.11.045.

Arslan, M., & Dervis, S. (2010). Antifungal activity of essential oils against three vegetative-compatibility groups of Verticillium dahliae. World Journal of Microbiology & Biotechnology, 26, 1813-1821.

Badreddine, B. S., Olfa, E., Samir, D., Hnia, C., & Lahbib, B. J. M. (2015). Chemical composition of Rosmarinus and Lavandula essential oils and their insecticidal effects on Orgyia trigotephras (Lepidoptera: Lymantriidae). Asian Pacific Journal of Tropical Medicine, 98-103. doi: 10.1016/S1995-7645(14)60298-4.

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46, 446-475. doi: 10.1016/j.fct.2007.09.106.

Christofoli, M., Costa, E. C. C., Bicalho, K. U., de Cássia Domingues, V., Fernandes Peixoto, M., Fernandes Alves, C. C., . . . de Melo Cazal, C. (2015). Inseecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products, 70, 301-308.

Danielli, L. J., Pippi, B., Soares, K. D., A., D. J., Maciel, A. J., M., M. M., . . . Apel, M. A. (2017). Chemosensitization of filamentous fungi to antifungal agents using Nectandra Rol. ex Rottb. species essential oils. Industrial Crops and Products, 102, 7-15.

Dornic, N., Roudot, A. C., Batardiére, A., Nedelec, A. S., Bourgeois, P., Hornez, N., . . . Ficheux, A. S. (2018). Aggregate exposure to common fragrance compounds: Comparison of the contribution of essential oils and cosmetics using probabilistic methods and example of limonene. Food and Chemical Toxicology, 116, 77-85. doi: 10.1016/j.fct.2018.04.017.

ElShafei, G. M. S., El-Said, M.M., Attia, H.A.E., Mohammed, T.G.M. (2010). Environmentally friendly pesticides: Essential oil-based w/o/w multiple emulsions for anti-fungal formulations. Industrial Crops and Products, 31, 99-106.

Fontes-Puebla, A. A., Fu-Castillo, A. A., & López-Arroyo, J. I. (2012). Eficacia de productos orgánicos foliares para el control de ninfa y adultos de Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Revista Biotecnia, XIV(2), 26-31.

Halla, N., Heleno, S. A., Costa, P., Fernandes, I. P., Calhelha, R. C., Boucherit, K., . . . Barreiro, M. F. (2018). Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. Industrial Crops and Products, 119, 249-254. doi: 10.1016/j.indcrop.2018.04.043.

Jemaa, J. M. B., Haouel, S., Bouaziz, M., & Khouja, M. L. (2012). Season variations in chemical composition and fumigant activity of five Eucalyptus essential oils against three moth pests of sotred dates in Tunisia. Journal of Stored Products Research, 48, 61-67. doi: 10.1016/j.jspr.2011.10.001.

Jiang, Z. L., Akhtar, Y., Zhang, X., Bradbury, R., & Isman, M. B. (2012). Insecticidal and feeding deterrent activities of essentail oils in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Journal of Applied Entomology, 136, 191-202. doi:10.1111/j.1439-0418.2010.01587.x.

Jing, L., Lei, Z., Li, L., Xie, R., Xi, W., Guan, Y., . . . Zhou, Z. (2014). Antifungal activity of citrus essential oils. Journal of Agricultural and Food Chemistry, 62(14), 3011-3033. doi: 10.1021/jf5006148.


Khalili, S. T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., . . . Tabatabaei, M. (2015). Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT - Food Science and Technology, 60, 502-508.

Koul, O., Singh, R., Kaur, B., & Kanda, D. (2013). Comparative study on the behavioral response and acute toxicity of some essential oils compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura, and Chilo partellus. Industrial Crops and Products, 49, 428-436. doi: 10.1016/j.indcrop.2013.05.032.

Luz, C., & Batagin, I. (2005). Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathologia, 160(1), 51-62. doi: 10.1007/s11046-005-0210-3

Mahboubi, M., HeydaryTabar, R., & Mahdizadeh, E. (2017). The anti-dermatophyte activity of Zataria multiflora essential oils. Journal of Mycologie Médicale, 27, 232-237. doi: 10.1016/j.mycmed.2017.03.001.

Mahboubi, M., & Kazempour, N. (2015). The antifungal activity of Artemisia sieberi essential oil from different localities of Iran against dermatophyte fungi. Journal of Mycologie Médicale, 25, e65-e71. doi: 10.1016/j.mycmed.2015.02.042.

Matusinski, P., Zouhar, M., Pavela, R., & Novy, P. (2015). Antifugal effect of five essential oils against important pathogenic fungi of cereal. Industrial Crops and Products, 67, 208-215.

Mola, F. L., & Afkari, R. (2012). Effects of different vegetable oils formulations on temperature tolerance and storage duration of Beauveria bassiana conidia. African Journal of Microbiology Research, 6(22), 4707-4711. doi: 10.5897/AJMR11.1372.

Nguemtchouin, M. M. G., Ngassoum, M. B., Chalier, P., Kamga, R., Ngamo, L. S. T., & Cretin, M. (2013). Ocimum gratissimum essential oil and modified montmorillonite clay, a means of controlling insect pests in stored products. Journal of Stored Products Research, 52, 57-62.

Nguemtchouin, M. M. G., Ngassoum, M. B., Ngamo, L. S. T., & Cretin, M. (2010). Insecticidal formulation based on Xylopia aethiopicica essential oil and kaolinite clay for maize protection. Crop Protection, 29, 985-991.

Peng, G., Wang, Z., Yin, Y., Zeng, D., & Xia, Y. (2008). Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northen China. Crop Protection, 27, 1244-1250. doi: 10.1016/j.cropro.2008.03.007.

Polatoglu, K., C., K. Ö., Yücel, Y. Y., Gücel, S., Demirci, B., Baser, K. H. C., & Demirci, F. (2016). Insecticidal activity of edible Crithmum maritimum L. essential oil against coleopteran and lepidopteran insects. Industrial Crops and Products, 89, 383-389. doi:10.1016/j.indcrop.2016.05.032.

Prakash, B., KedMishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities - Potentials and challenges. Food Control, 47, 381-391.

Rivera Calo, J., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobial in food systems - A review. Food Control, 54, 111-119.

Rosas-García, N. M., Arévalo-Niño, K., Medrano-Roldán, H., Galán- Wong, L. J., Luna-Olvera, H. A., & Morales-Ramos, L. H. (2001). Spray-dried encapsulated Beauveria bassiana formulations using biodegradable polymers. Southwestern Entomologist, 26(3), 259-267.

Sánchez, Y., Pino, O., Lazo, F. J., Abreu, Y., Naranjo, E., & Iglesia, A. (2011). Actividad promisoria de aceites esenciales de especies pertenecientes a la tribu Pipereae frente a Artemia salina y Xanthomonas albilineans. Rev. Protección Veg., 26(1), 45-51.

Volpe, V., Nascimento, D. S., Insausti, M., & Grünhut, M. (2018). Octyl p-methoxycinnamate loaded microemulsion based on Ocimum basilicum essential oil. Characterization and analytical studies for potential cosmetic applications. Colloids and Surfaces A, 546, 285-292. doi: 10.1016/j.colsurfa.2018.02.070.

Werdin González, J. O., Gutiérrez, M. M., Ferrero, A. A., & Fernández Band, B. (2014). Essential oils nanoformulations for stores-product pest control - Characterization and biological properties. Chemosphere, 100, 130-138.

Zhaveh, S., Mohsenifar, A., Beiki, M., Khalili, S. T., Abdollahi, A., Rahmani-Cherati, T., & Tabatabaei, M. (2015). Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicorbial activity against Aspergillus flavus. Industrial Crops and Products, 69, 251-256.