Análisis de la variación del flujo magnético alrededor de defectos rectangulares y triangulares en placas ferromagnéticas

Resumen

El presente artículo, enmarcado en el contexto del proyecto Desarrollo de un sistema experto para el modelado y monitoreo de grietas superficiales (tipo triangular y rectangular) en tuberías ferromagnéticas usando el método de memoria magnética, presenta el análisis de la variación del flujo magnético alrededor de defectos rectangulares y triangulares en placas ferromagnéticas. Este análisis utiliza una metodología con un estudio exploratorio de modelos numéricos a partir de modelos analíticos existentes. Los modelos numéricos obtenidos servirán como base al compararlos con resultados experimentales para cuantificar la magnitud de los defectos. Los resultados determinaron, a través del análisis de datos, que es posible detectar y clasificar, con un alto grado de certidumbre y alto nivel de confiabilidad, el tamaño y la forma de los defectos superficiales tipo rectangular y triangular mediante los componentes tangencial y normal de esos defectos.

https://doi.org/10.15174/au.2020.2336
PDF
XML

Citas

Dubov, A. (2006). Principle features of Metal Magnetic Memory Method and Inspection Tools As Compared To Known Magnetic NDT Methods. Cinde Journal, 27(3), 16. Retrieved from http://www.ndt.net/article/ecndt2006/doc/Tu.1.6.5.pdf

Huang, H., Jiang, S., Yang, C., & Liu, Z. (2014). Stress concentration impact on the magnetic memory signal of ferromagnetic structural steel. Nondestructive Testing and Evaluation, 29(4), 377–390. http://doi.org/10.1080/10589759.2014.949710

Jiancheng, L., Minqiang, X., Jianwei, L., & Jianzhong, Z. (2010). Characterization of the Elastic-plastic Region Based on Magnetic Memory Effect. Chinese Journal of Mechanical Engineering, 23(4), 532–536. http://doi.org/10.3901/CJME.2010.04.

Leng, J. C., Xing, H. Y., Zhou, G. Q., & Gao, Y. T. (2013). Dipole modelling of metal magnetic memory for V-notched plates. Insight: Non-Destructive Testing and Condition Monitoring, 55(9), 498–503. http://doi.org/10.1784/insi.2012.55.9.498

Pengpeng, S., & Xiaojing, Z. (2015). Magnetic charge model for 3D MMM signals. Nondestructive Testing and Evaluation, 31(1), 45–60. http://doi.org/10.1080/10589759.2015.1064121

Suresh, V., & Abudhair, A. (2016). Dipole model to predict the rectangular defect on ferromagnetic pipe. Journal of Magnetics, 21(3), 437–441. http://doi.org/10.4283/JMAG.2016.21.3.437

Wang, Z. D., Gu, Y., & Wang, Y. S. (2012). A review of three magnetic NDT technologies. Journal of Magnetism and Magnetic Materials, 324(4), 382–388. http://doi.org/10.1016/j.jmmm.2011.08.048

Wang, Z. D., Yao, K., Deng, B., & Ding, K. Q. (2010a). Quantitative study of metal magnetic memory signal versus local stress concentration. NDT & E International, 43(6), 513–518. http://doi.org/10.1016/j.ndteint.2010.05.007

Wang, Z. D., Yao, K., Deng, B., & Ding, K. Q. (2010b). Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT & E International, 43(4), 354–359. http://doi.org/10.1016/j.ndteint.2009.12.006

Yao, K., Deng, B., & Wang, Z. D. (2012). Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples. NDT and E International, 47, 7–17. http://doi.org/10.1016/j.ndteint.2011.12.004