Immunophenotypes in peripheral blood of children in pre-school age: reference values


The immune system during human development undergoes changes due to maturity and exposure to antigens. The objective of this study is to evaluate leukocyte populations and lymphocyte subpopulations in health children. Peripheral blood was obtained to identify leukocytes, memory (CD45RO+) and effector cells. A total of 102 preschoolers were analyzed; those from four to five years presented a decrease in leukocytes and naïve cells (CD4+CD45RA), in relation to children from six to 24 months. Children from 25 to 48 months showed a decrease in CD8+ CD45RA+, compared to children aged 6 to 24 months. The Natural Killer ncreased in the group from 25 to 48 months. Other increased subpopulations were CD8+, CD3+CD45RO+, and CD4+CD45RO+ in children aged 49 to 60 months. In those from 25 to 48 months, the CD4+CD45RA+CD45RO+, CD8+CD45RA+CD45RO+, and CD8+CD45RO+ were found to be increased. As a conclusion, the populations of leukocytes and lymphocytes showed statistically significant changes, regarding the chronology of their ages of Mexican children.
PDF (Español (España))


Booth, N., McQuaid, A., Sobande, T., Kissane, S., Agius, E., Jackson, S. E., Salmon, M., Falciani, F., Yong, K., Rustin, M. H., Akbar, A. N. & Vukmanovic-Stejic, M. (2010). Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol. 8: 4317-4326.

Ding, Y., Zhou, L., Xia Y, Wang W, Wang Y, Li l., Qi Z, Zhong L, Sun J, Tang W, Liang F, Xiao H, Qin I, Luo Y., Zhao. X., Shu, Z., Ru, Y., Dai, R., Wang, H., Wang, H., Wang, Y., Zhang, Y., Zhang, S., Gao, C., Du, H., Zang, X., Chen, Z., Wang, X., Song, H., Yang, J. & Zhao. X. (2018). Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol. 142: 970-973e8.

Eusebio, M., Kraszulą, L., Kupczyk, M., Kuna, P. & Pietrucz M. (2013). The effects of interleukin-10 or TGF-beta on anti-CD3/CD28 induced activation of CD8+CD28- and CD8+CD28+ T cells in allergic asthma. J Bioll Reg Hom Agents. 27:681-92.

Fülöp, T., Larbi, A. & Pawelec, G.. (2013). Human T cell aging and the impact of persistent viral infections. Front Immunol. 4:1-9.

Golubovskaya, V. & Wu, L. (2016). Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. 8.

Idigbe, E. O., Audu, R. A., Iroha E. O., Akinsulie, A. O., Temiye, E. O., Ezeaka, V. C., Adetifa, I. M. O., Musa, A. Z. & Onyewuche, J. (2010). T-Lymphocyte Subsets in apparently healthy Nigerian. Chil Intern J Pediat. Article ID 474380, 7. Doi:10.1155/2010/474380

Kaech, S. M., Wherry, E. J. & Ahmed, R. (2002). Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2: 251-262.

Lin, Y., Kim, J., Metter, E. J., Nguyen, H., Truong, Th., Lustig, A., Ferrucci, L. & Weng, N. Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors.Immun Ageing. 2016; 13: 24.

Lourenço, O., Fonseca, A. M. & Taborda-Barata, L. Human CD8+ T Cells in Asthma: Possible Pathways and Roles for NK-Like Subtypes Front Immunol. 2016. 7:638.

Mandal, A.& Viswanathan, C. (2015). Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther. 8:47-55

Mertens. J., Fabri, M., Zingarelli, A., Kubacki, T., Meemboor, S., Groneck, L., Seeger, J., Bessler, M., Hafke, H., Odenthal, M., Bieler, J. G., Kalka, Ch., Schneck, J. P., Kashkar, H. & Kalka-Moll, W. M. (2009). Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD282 Regulatory T Lymphocytes by TCR Crosslinking. PLoS Pathog. 5:e1000596. doi: 10.1371/journal.ppat.1000596.

Moore, T. V., Clay, B. S., Ferreira, C. M., Williams, J. W., Rogozinska, M., Cannon, J. L., Shilling, R. A., Marzo, A. L. & Sperlin, A. I. (2011). Protective Effector Memory CD4 T Cells Depend on ICOS for Survival. PloSe One. 6:e16529.

Nájera, O., González, C., Cortés, E., Toledo, G. & Ortiz. R. (2007). Effector T lymphocytes in well-nourished and malnourished infected Children. Clin Exp Immunol. 148: 501–506.

Organización Mundial de la Salud. ACC/SCN. Report on the World Nutritional Situation. WHO. Geneva 2008.

Palacios M. (2018). Figura y Tablas.

Piątosa, B., Wolska-Kuśnierz, B., Pac, M., Siewiera, K., Gałkowska, E. & Bernatowska, E. (2010). B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom. 78: 372-81.

Prezzemolo, T., Guggino, G, La Manna. M. P., Di Liberto, D., Dieli, F. & Caccamo, N. (2014). Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol. 22: 1-13.

Pulko, V., Davies, J. S., Martinez, C., Lanteri, M. C., Busch, M. P., Diamond, M. S., Knox, K., Bush, E. C., Sims, P. A., Sinari, Sh., Billheimer, D., Haddad, E. K., Murray, K. O., Wertheimer, A. M. & Nikolich-Žugich, J. (2016). Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol. 17: 966-975.

Sagnia, B., Ndongo, F. A., Moyo Tetang, S. N., Torimiro, J. N., Cairo, C., Domkam, I., Agbor, G., Mve, E., Tocke, O., Fouda, E., Missi Oukem-Boyer, O. O. & Colizzi, V. (2011). Reference Values of Lymphocyte Subsets in Healthy, HIV-Negative Children in Cameroon. Clin Vaccine Immunol. 18: 790–795.

Saule, P., Trauet, J., Dutriez, V., Lekeux, V., Dessaint, J. P. & Labalette, M. (2006). Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech Ageing Dev. 127: 274–281

Torres, Y., Bermúdez, V., Garicano, C., Villasmil, N., Bautista, J., Martínez, M. S. & Rojas-Quintero, J. (2017). Desarrollo del sistema inmunológico ¿Naturaleza o crianza? Arch Ven Farm Terap. 36:(85) 144-151.

Tosato, F., Bucciol, F., Pantano, G., Putti, M. C., Sanzari, M. C., Basso, G. & Plebani, M. (2015). Lymphocytes subsets reference values in childhood. Cytometry Part A. 87A: 81-85.