White-tailed deer sex identification from faecal DNA and pellet morphometry by neural network and fuzzy logic analyses


Knowing the sex of white-tailed deer (Odocoileus virginianus) individuals can provide information to set harvesting rates and management activities. Therefore, the aim of this study is to identify the sex through classification function by using faecal pellet morphometry. Faeces were collected for 12 months in Durango, Mexico; their morphometric variables were measured, the faecal DNA was extracted, and the SRY gene marker was amplified to identify sex. A neural network and fuzzy logic sex classification functions were obtained. The outputs were validated with the SRY gene results. Data from adults in the winter were used to obtain the classification functions. Classification functions could accurately classify sex in 94.4% with neural networks and 86.9% with fuzzy logic. The neural network classified more accurately the sex of adult white-tailed deer studied in winter with the faecal pellets morphometry than with the fuzzy logic analysis. This technique can be a tool for non-invasive studies and monitoring of populations.

PDF (Español (España))
XML (Español (España))


Alvarez, G. (1994). Morphological variability and identification of deer pellets in central Spain. Folia Zoologica 43, 25-37.

Ball, M. C. (2010). Faecal pellet size can be used to differentiate age-classes in caribou: implications for non-invasive genetic studies. Conservation Genetic Resources 2:239-241. DOI 10.1007/s12686-010-9252-z

Barboza, P. S.,& Bowyer, R. T. (2000). Sexual segregation in dimorphic deer: a new gastrocentric hypothesis. Journal of Mammalogy 81, 473-489. https://doi.org/10.1644/1545-1542(2000)081%3C0473:SSIDDA%3E2.0.CO;2

Brinkman, T. J., Person, D. K., Schwartz, M. K., Pilgrim, K. L., Colson, K. E., and Hundertmark, K. J. (2010). Individual identification of Sitka black deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conservation Genetic Resources 2, 115-188. DOI 10.1007/s12686-010-9176-7

Bryja, J., & Konečný, A. (2003). Fast sex identification in wild mammals using PCR amplification of SRY gene. Folia Zoologica 52, 269-274.

Camargo-Sanabria, A. A., & Mandujano, S. (2009). Evaluación de la morfometría de pellets como método de categorización de sexos y edades en venado cola blanca (Odocoileus virginianus mexicanus) en Puebla, México. Revista Mexicana de Mastozoología. 13, 92-104. http://www.revmexmastozoologia.unam.mx/ojs/index.php/rmm/article/view/38

Chairez, I., Gurrola, J. N., García, C., & Echavarría, F. (2008). Grasshopper density population classification with neural networks. Biophysical Reviews and Letters 3, 275-283. https://doi.org/10.1142/S1793048008000745

Clemente, F., Riquelme, E., Mendoza, G., Bárcena, R., González, S., & Ricalde, R. (2005). Digestibility of forage diets of white-tailed deer (Odocoileus virginianus, Hays) using different ruminal fluid inocula. Journal of Applied Animal Research 27, 71-76. https://doi.org/10.1080/09712119.2005.9706543

Clemente, F., Cessa, V., Cortez, C., Tarango, L., & Arenas, P. (2015). Commercial extenders and freezing curves for the preservation of sperm cells of white-tailed deer (Odocoileus virginianus). Journal of Applied Animal Research. 43, 468-473. https://doi.org/10.1080/09712119.2014.980422

Dostaler, S., Quillet, J., Therrien, J., & Côte, S. (2011). Are feeding preferences of white-tailed deer related to plant constituents?. Journal of Wildlife Management 75, 913-918.

Ezcurra, E., & Gallina, S. (1981). Biology and population dynamics of white-tailed deer in Northwestern Mexico. In ´Deer biology, habitat requirements, and management in western North America´. (Ed. P. F. Pfolliot, and S. Gallina.) pp. 77-108. (Instituto de Ecología. A.C., Mexico City, Mexico.)

Galindo-Leal, C., & Weber, M. (1998). ´El venado de la Sierra Madre Occidental, ecología manejo y conservación´. (EDICUSA-CONABIO, Ciudad de México, México.)

González, M., González, M., & Márquez, M. (2007). ´Vegetación y ecorregiones de Durango´. (Plaza y Valdez, Ciudad de México, México.)

Han, S. H., Lee, S. S., Cho, I. C., Oh, M. Y., & Oh, H. S. (2009). Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. Journal of Applied Animal Research 35, 61-66. https://doi.org/10.1080/09712119.2009.9706986

Harding, J. P. (1949). The use of probability paper for the graphical analysis of polymodal frequency distributions. Journal of Marine Biological Association 28: 141-152.

Homolka, M., Heroldová, M., & Bartoš, L. (2008). White-tailed deer winter feeding strategy in area shared with other deer species. Folia Zoologica 57, 283-293. http://www.ivb.cz/folia_zoologica/archive/57_283-293.pdf

Huber, S., Bruns, U., & Arnold, W. (2002). Sex determination of red deer using Polymerase Chain Reaction of DNA from feces. Wildlife Society Bulletin 30, 208-212. DOI: 10.2307/3784655

Huber, S., Bruns, U., & Arnold, W. (2003). Genotyping hervibore feces facilitating their further analyses. Wildlife Society Bulletin 31, 92-697.

Kobelkowsky-Sosa, R., Palacio, J., Clemente, F., Mendoza, G., Herrera, J., & Gallegos, J. (2001). Calidad del hábitat y estado poblacional del venado cola blanca (Odocoileus virginianus, Hays) en ranchos cinegéticos de la Sierra Fría, Aguascalientes. Revista Chapingo Serie Ciencias Forestales y del Ambiente 6, 125-130. file:///D:/Informacion/Informacion/Downloads/rchscfaVI331%20(1).pdf

Lindsay, A. R., & Belant, J. (2007). A simple and improved PCR based technique for white-tailed deer (Odocoileus virginianus) sex identification. Conservation genetics. Technical note. Springer. DOI 10.1007/s10592-007-9326-y.

Lounsberry, Z. T., Forrester, T. D., Olegario, M. T., Brazeal, J. L., Wittmer, H. U., & Sacks, B. N. (2015). Estimating sex-specific abundance in fawning areas of high-density Columbian black-tailed deer using fecal DNA. Journal of Wildlife Management 79, 39-49. https://doi.org/10.1002/jwmg.817

MacCracken, J. G., & Van Ballenberghe, V. (1987). Age and sex-related differences in fecal pellet dimensions of moose. Journal of Wildlife Management 51, 360-364.

Martínez, J. H., & Martínez, L. (2010). ´Propuesta para el ordenamiento ecológico territorial del ejido Presidente Salvador Allende, municipio de Durango´. (SEMARNAT, Durango, Mexico).

McCoy, J. C., & Ditchkoff, S. S. (2012). Patterns of fecal hormones in a fenced population of white-tailed deer. Wildlife Society Bulletin 36, 641-646. DOI: 10.1002/wsb.190

Morden, C. J. C., Weladji, R. B., Ropstad, E., Dahl, E., & Holand, Ø. (2011). Use of faecal pellet size to differentiate age classes in female Svalbard reindeer Rangifer tarandus platyrhynchus. Wildlife Biology 17, 441-448. https://doi.org/10.2981/10-023

Myers, W. L., Foreyt, W. J., Talcott, P. A., Evermann, J. F., & Chang, W. (2015).Serologic, trace element, and fecal parasite survey of free-ranging, female mule deer (Odocoileus hemionus) in eastern Washington, USA. Journal of Wildlife Diseases 51, 125-136. https://doi.org/10.7589/2014-05-119

Ragin, C. C., Drass, K. A., & Davey, S. (2006). ´Fuzzy-Set/Qualitative Comparative Analysis 2.0´. (Department of Sociology, University of Arizona, Tucson, Arizona.)

Riley, S., Decker, D., Enck, J., Curtis, P., Lauber, T., & Brown, T. (2003). Deer populations up, hunter populations down: Implications of interdependence of deer and hunter population dynamics on management. Ecoscience. 10, 455–461. https://doi.org/10.1080/11956860.2003.11682793

Rosales, S., & Villanueva, J. (2014). Efecto de la deforestación sobre la variabilidad climática en bosques de Pinus duranguensis Martínez en el municipio de Durango. In ´Efecto de la deforestación sobre la variabilidad climática en cinco bosques de coníferas´. (Comp. M. R. Pérez) pp. 83-110. (SAGARPA, INIFAP, CENID, COMEF, Mexico.)

Sánchez-Rojas, G., Gallina, S., and Equihua, M. (2004). Pellet morphometry as a tool to distinguish age and sex in the mule deer. Zoo Biology 23, 139-146. https://doi.org/10.1002/zoo.10119

Shaw, C. N., Wilson, P. J., & White, B. N. (2003). A reliable molecular method of gender determination for mammals. Journal of Mammalogy 84, 123-128. https://doi.org/10.1644/1545-1542(2003)084%3C0123:ARMMOG%3E2.0.CO;2

Tolleson, D. R., Randel, R. D., Stuth, J. W., & Neuendorff, D. A. (2005). Determination of sex and species in red and fallow deer by near infrared reflectance spectroscopy of the faeces. Small Ruminant Research 57, 141-150. https://doi.org/10.1016/j.smallrumres.2004.06.020

Woodruff, S. P., Johnson, T. R., & Waits, L. P. (2016). Examining the use of fecal pellet morphometry to differentiate age classes in Sonoran pronghorn. Wildlife Biology 22, 217-227. https://doi.org/10.2981/wlb.00209

Yamauchi, K., Hamasaki, S. I., Miyazaki, K., Kikusiu, T., Takeuchi, Y., & Mori, Y. (2000). Sex determination base on fecal DNA analysis of amelogenin gene in sika deer (Cervus nippon). The Journal of Veterinary Medical Science 62, 669-671. https://www.ncbi.nlm.nih.gov/pubmed/10907700