An optimized model for rectangular pile caps supported on a group of piles: Part 1) Optimum surface


This paper shows an optimized model for rectangular pile caps, or footings, supported on a group of piles to obtain the minimum surface area in plant, supporting an axial load and two moments in the direction of the X and Y axis due to a column. This model assumes that the caps are perfectly rigid, and the piles are articulated at the junction of the caps with the piles; therefore, the piles transmit only vertical load. The methodology normally used to obtain the surface area of the caps is proposed in accordance to the distribution of the piles, taking the specifications set by the building codes into account. Also, five types of caps supported on a group formed by two, three, four, five and six piles are shown to demonstrate the accuracy of the model presented.
PDF (Español (España))


Aldwalk, M., & Adeli, H. (2014). Advances in optimization of highrise building structures. Structural and Multidisciplinary Optimization, 50(6), 899-919.

Amornfa, K., Phienwej, N., & Kitpayuck, P. (2012). Current practice on foundation design of high-rise buildings in Bangkok, Thailand. Lowland Technology International , 14(2), 70-83.

Chagoyén, E., Negrín, A., Cabrera, M., López, L., & Padrón, N. (2009). Diseño óptimo de cimentaciones superficiales rectangulares. Formulación. Revista de la Construcción, 8(2), 60-71.

Gere, J., & Goodo, B. (2009). Mecánica de Materiales. México, Distrito Federal, México: Cengage Learning.

Hassaan, G. A. (2014). Optimal Design of Machinery Shallow Foundations with Silt Soils. International Journal of Mechanical Engineering ( IJME ), 4(3), 11-24.

Hui, L., Zhuoyi, C., & Mingji, Z. (2015). Genetic Algorithm Application on Optimal Design of Strip Foundation. The Open Cybernetics & Systemics Journal, 9, 335-339.

Hwang, J. H., Lyu, Y. D., & Chung, M. C. (2011). Optimizing Pile Group Design Using a Real Genetic Approach. Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference (págs. 491-499). Maui, Hawaii, USA: International Society of Offshore and Polar Engineers (ISOPE).

Jelušič, P., & Žlender, B. (2018). Optimal design of pad footing based on MINLP optimization. Soils and Foundations, 58(2), 277-289.

Kao, C.-S., & Yeh, I.-C. (2014). Optimal design of plane frame structures using artificial neural networks and ratio variables. Strustural Engineering and Mechanics, 52(4), 739-753.

Kim, H., Koo, H., & Kang, I. (2002). Genetic algorithm-based optimum design of piled raft foundations with model tests. Geotechnical Engineering, 33(1), 1-11.

Kravanja, S., & Zula, T. (2010). Cost optimization of industrial steel building structures. Advances in Engineering Software, 41(3), 442-450.

Letsios, C., Lagaros, N. D., & Papadrakakis, M. (2014). Optimum design methodologies for pile foundations in London. Case Studies in Structural Engineering, 2, 24-32.

Leung, Y., Klar, A., & Soga, K. (2010). Theoretical study on pile length optimization of pile groups and piled rafts. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 319-330.

Leung, Y., Klar, A., Soga, K., & Hoult, N. (2017). Superstructure-foundation interaction in multi-objective pile group optimization considering settlement response. Canadian Geotechnical Journal, 54(10), 1408-1420.

López-Chavarría, S., Luévanos-Rojas, A., & Medina-Elizondo, M. (2017). Optimal dimensioning for the corner combined footings. Advances in Computational Design, 2(2), 169-183.

Luévanos-Rojas, A. (2016). Numerical experimentation for the optimal design of reinforced rectangular concrete beams for singly reinforced sections. Dyna, 83(196), 134-142.

Luévanos-Rojas, A., López-Chavarría, S., & Medina-Elizondo, M. (2017). Optimal design for rectangular isolated footings using the real soil pressure. Ingeniería e Investigación, 37(2), 25-33.

Luévanos-Rojas, A., López-Chavarría, S., & Medina-Elizondo, M. (2018). Optimización de vigas de concreto reforzado para secciones rectangulares con experimentos numéricos. Computación y Sistemas, 22(2), 599-606.

Ng, C., & Lam, H. (2005). Optimization Design of Tall Buildings Under Multiple Design Criteria . International Journal of Applied Mathematics and Mechanics (IJAMM), 4, 35-48.

Pallares-Muñoz, M. R., & Rodriguez-Calderón, W. (2014). Optimización del Diseño en Armaduras. Revista De Ingeniería y Región, 11, 91-99.

Penteado, L., & de Brito, J. (2012). Expert knowledge-based selection methodology for optimizing the construction of concrete piles. Journal of Perfomance of Constructed Facilities, 26(1), 95-103.

Ravichandran, N., Shrestha, S., & Piratla, K. (2018). Robust design and optimization procedure for piled-raft foundation to support tall wind turbine in clay and sand. Soils and Foundation, 58(3), 744-755.

Regupathi, R., & Sugumar, R. (2017). Cost Minimization of Reinforced Concrete Pile Cap Using Optimization Techniques. International Journal of Advance Engineering and Research Development, 4(7), 745-750.

Tapia, M., Botello, S., Caudillo, L. A., Hernández, H., Munguía, I., Salazar, J. E., . . . Yáñez, M. (2012). Diseño óptimo de estructuras tridimensionales. Acta Universitaria, 22(7), 25-31.

Tiliouine, B., & Fedghouche, F. (2014). Cost optimization of reinforced high strength concrete T-sections in flexure. Structural Engineering and Mechanics, 49(1), 65-80.

Velázquez-Santillán, F., Luévanos-Rojas, A., López-Chavarría, S., Medina-Elizondo, M., & Sandoval-Rivas, R. (2018). Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings. Advances in Computational Design, 3(1), 49-69.

Wei, W., Min, Y., & Shi-qing, S. (2015). Pile diameter optimization analysis method of piled raft foundation based on minimization of differential settlements. Rock and Soil Mechanics, 36(2), 178-184.