Modelo optimizado para cabezales rectangulares apoyados sobre un grupo de pilotes: Parte 2) Diseño óptimo

Resumen

La primera parte de esta investigación presenta un modelo optimizado para cabezales o zapatas rectangulares apoyadas sobre un grupo de pilotes para obtener la superficie mínima en planta (área óptima) que soporta una carga axial y dos momentos sobre el eje X y Y debido a una columna. La presente investigación muestra el diseño óptimo (costo mínimo) para cabezales. Este modelo considera que los cabezales son perfectamente rígidos y los pilotes están articulados en la unión de los cabezales con los pilotes y, por lo tanto, los pilotes transmiten solamente carga vertical. La metodología normalmente utilizada para obtener el diseño de los cabezales considera que todos los pilotes transmiten la misma carga vertical; esto funciona únicamente cuando la columna transmite carga axial y no momentos. Además, cinco tipos de cabezales apoyadas sobre un grupo formado por dos, tres, cuatro, cinco y seis pilotes se muestran para demostrar la precisión del modelo presentado en este documento.

https://doi.org/10.15174/au.2020.2466
PDF

Citas

ACI 318S-14 (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318, New York, USA.

Adebar, P., & Zhou, Z. (1996). Design of deep pile caps by strut-and-tie models. ACI Structural Journal, 93(4), 1-12.

Araújo, J. M. (2016). Design of rigid pile caps through of strut-and-tie model. Journal of Advanced Concrete Technology, 14(8), 397-407.

Araújo, J. M. (2017). Reliability analysis of rigid pile caps using an iterative strut-and-tie model. Architecture Civil Engineering Environment, 2, 65-75.

Chagoyén, E., Negrín, A., Cabrera, M., López, L., & Padrón, N. (2009). Diseño óptimo de cimentaciones superficiales rectangulares. Formulación. Revista de la Construcción, 8(2), 60-71.

Hassaan, G. A. (2014). Optimal Design of Machinery Shallow Foundations with Silt Soils. International Journal of Mechanical Engineering ( IJME ), 4(3), 11-24.

Hui, L., Zhuoyi, C., & Mingji, Z. (2015). Genetic Algorithm Application on Optimal Design of Strip Foundation. The Open Cybernetics & Systemics Journal, 9, 335-339.

Hwang, J. H., Lyu, Y. D., & Chung, M. C. (2011). Optimizing Pile Group Design Using a Real Genetic Approach. Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference (págs. 491-499). Maui, Hawaii, USA: International Society of Offshore and Polar Engineers (ISOPE).

Jelušič, P., & Žlender, B. (2018). Optimal design of pad footing based on MINLP optimization. Soils and Foundations, 58(2), 277-289.

Kim, H., Koo, H., & Kang, I. (2002). Genetic algorithm-based optimum design of piled raft foundations with model tests. Geotechnical Engineering, 33(1), 1-11.

Letsios, C., Lagaros, N. D., & Papadrakakis, M. (2014). Optimum design methodologies for pile foundations in London. Case Studies in Structural Engineering, 2, 24-32.

Leung, Y., Klar, A., & Soga, K. (2010). Theoretical study on pile length optimization of pile groups and piled rafts. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 319-330.

López-Chavarría, S., Luévanos-Rojas, A., & Medina-Elizondo, M. (2017). Optimal dimensioning for the corner combined footings. Advances in Computational Design, 2(2), 169-183.

Luevanos Rojas, A. (2014). Design of isolated footings of circular form using a new model. Structual Engineering and Mechanics, 52(4), 767-786.

Luevanos Rojas, A. (2015). Design of boundary combined footings of trapezoidal form using a new model. Structural Engineering and Mechanics, 56(5), 745-765.

Luevanos Rojas, A., Barquero Cabrero, J. D., Lopez Chavarria, S., & Medina Elizondo, M. (2017). A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models. Coupled Systems Mechanics, 6(4), 417-437.

Luévanos-Rojas, A., López-Chavarría, S., & Medina-Elizondo, M. (2017). Optimal design for rectangular isolated footings using the real soil pressure. Ingeniería e Investigación, 37(2), 25-33.

Mendonca, A., & Paiva, J. B. (2003). An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation. Engineering Analysis with Boundary Elements, 27(9), 19-93.

Oliveira, D., Barrios, R., & Giongo, J. (2014). Six pile caps reinforced concrete: numerical simulation. IBRACON Structures and Materials Journal, 7(1), 1-23.

Penteado, L., & de Brito, J. (2012). Expert knowledge-based selection methodology for optimizing the construction of concrete piles. Journal of Perfomance of Constructed Facilities, 26(1), 95-103.

Poulos, H. (2001). Piled Raft Foundations: design and applications. ICE Publishing Journals, 51(2), 95-113.

Ravichandran, N., Shrestha, S., & Piratla, K. (2018). Robust design and optimization procedure for piled-raft foundation to support tall wind turbine in clay and sand. Soils and Foundation, 58(3), 744-755.

Regupathi, R., & Sugumar, R. (2017). Cost Minimization of Reinforced Concrete Pile Cap Using Optimization Techniques. International Journal of Advance Engineering and Research Development, 4(7), 745-750.

Souza, R., Kuchma, D., Park, J., & Bittencourt, T. (2009). Adaptable strut-and-tie model for design and verification of four-pile caps. ACI Structural Journal, 106(2), 142–150.

Velázquez-Santillán, F., Luévanos-Rojas, A., López-Chavarría, S., Medina-Elizondo, M., & Sandoval-Rivas, R. (2018). Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings. Advances in Computational Design, 3(1), 49-69.

Wei, W., Min, Y., & Shi-qing, S. (2015). Pile diameter optimization analysis method of piled raft foundation based on minimization of differential settlements. Rock and Soil Mechanics, 36(2), 178-184.