Estimación de la evaporación directa desde la napa subterránea mediante el uso de lisímetros en la cuenca del Salar de Pedernales, Altiplano Chileno

Resumen

En esta investigación se realiza una estimación de las descargas por evaporación desde napas someras en la cuenca Salar de Pedernales, utilizando la metodología del lisímetro. El análisis realizado muestra valores entre 1400 L·s-1 y 1900 L·s-1 con una incertidumbre de error de 5% respecto al promedio y entre 11% y 47% con relación a los valores mínimos y máximos, los cuales pueden ser comparados por otros estudios donde se han usado distintas herramientas para calcular la evaporación como: el domo, el modelo numérico, balance hídrico, relaciones de Bowen, correlaciones de Eddy y curvas de evaporación versus altitud. Los resultados confirman que los lisímetros constituyen una herramienta adecuada para la determinación de la evapotranspiración del suelo y la evaporación desde napa freática somera, cuyos componentes son claves en la hidrología de cuencas endorreicas, zonas áridas y semi-áridas, para la gestión de espacios naturales protegidos como salares, ojos de agua, vegas y bofedales.

https://doi.org/10.15174/au.2020.2480
PDF
XML

Citas

Aboukhaled, A., Alfaro, A. & Smith, M. (1982). Lysimeters. Irrigation and Drainage Paper, FAO. 39.

Alvarez, E. (1984). Exploración del Salar de Pedernales (Atacama) mediante imágenes Landsat procesadas por computador. Revista Geológica de Chile 21, 77-97. doi: http://dx.doi.org/10.5027/andgeoV11n1-a04.

Boast C. & Robertson T. (1982). A "micro-lysimeter" method for determining evaporation from bare soil: Description and laboratory evaluation. Soil Science Society of America Journal 46: 689-696.

Boulet, G., Braud, I. & Vauclin, M. (1997). Study of the mechanisms of evaporation under arid conditions using a detailed model of the soil-atmosphere continuum. Application to the EFEDA I experiment. Journal of Hydrology, 193(1-4), 114-141. doi: https://doi.org/10.1016/S0022-1694(96)03148-4.

Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L. y Ruelle, P. (1995). A simple soil-plant-atmosphere transfer model (SiSP A T) development and field verification. Journal of Hydrology, 166, 213-250.

CPH Consultores Ltda (2004). Estudio de modelación matemática hidrogeológica cuenca Salar de Pedernales. Santiago, Chile.

DGA-MOP (1987). Balance Hídrico de Chile. Ministerio de Obras Públicas, Santigo, Chile.

DGA & GeoHidrología (2013). Diagnóstico de Disponibilidad Hídrica en Cuencas Alto-Andinas de la Región de Atacama . SIT Nº 329. MOP.

DGA & ICASS (2014). Análisis de los Mecanismos de Evaporación y Evaluación de los Recursos Hídricos del Salar de Atacama. SIT Nº357. MOP.

DGA y GeoHidrología (2015). Diagnóstico de Disponibilidad Hídrica en Cuencas Alto-Andinas de la Región de Atacama, Fase 2.

DGA & AMPHOS 21 (2016). Diagnóstico de Disponibilidad Hídrica en Cuencas Alto - Andinas de la Región De Atacama, Fase 3. SIT Nº 398. MOP.

EDRA SA (1999) Hidrogeología Sector Cerro Pampa (Pedernales), Main Report.

Geoaguas Consultores (2007). Disponibilidad de recursos subterráneos en el sistema Tuyajto, II Región de Antofagasta. Santiago, Chile.

GP Consultores Ltda Collahuasi (2008). Evaluación de la evaporación desde el Salar del Huasco. Santiago, Chile.

Gowing, J.W., Konukcu, F. & Rose, D.A. (2006). Evaporative flux from a shallow watertable: The influence of a vapour-liquid phase transition. Journal of Hydrology 321 (1-4): 77-89. doi: https:/doi.org/10.1016/j.jhydrol.2005.07.035.

Gran, M., Carrera, J., Olivella, S. & Saaltink, M.S. (2011). Modeling evaporation process in a saline soil from saturation to oven dry conditions. Hydrology and Earth System Sciences 15: 2077-2089. doi: https:/doi.org/10.5194/hess-15-2077-2011.

Hernandez, F. (2012). Evaluación Experimental y Numérica de la Evaporación desde Aguas Subterráneas Someras. Aplicación a Suelos Salinos de la Cuenca del Salar de Huasco. Tesis de doctorado Pontificia Universidad Católica de Chile, Santiago, Chile, 186 pp.

Johnson E., Yáñez J., Ortiz C. & Muñoz J. (2010). Evaporation from shallow groundwater in closed basins in the Chilean Altiplano, Hydrological Sciences Journal 55 (4): 624-635. doi: https:/doi.org/10.1080/02626661003780458.

Johnson E. (2009). Evaporación desde napas freáticas someras en cuencas endorreicas del Altiplano Chileno. Tesis para optar al grado de Magíster en Ciencias de la Ingeniería. Pontificia Universidad Católica de Chile.

Kelleners T.J., Soppe R.W.O., Ayars J.E., Simunek J. & Skaggs T.H. (2005). Inverse Analysis of Upward Water Flow in a Groundwater Table Lysimeter. Vadose Zone Journal 4: 558–572. doi: https:/doi.org/10.2136/vzj2004.0118.

King, K.M., Tanner C.B. & Suomi V.E. (1956). Discussion of "A Floating Lysimeter and its Evaporation Recorder". Transactions, American Geophysical Union 37: 738-742. https://doi.org/10.1029/TR038i005p00765.

Mardones, L. (1998). Flux et évolution des solutions salines dans les systèmes hydrologiques des salars d'Ascotan et d'Atacama. PhD Thesis, University of Paris, Paris, France.

Mardones, L. (1986). Características geológicas e Hidrogeológicas del Salar de Atacama. El litio, un nuevo recurso para Chile: Editorial Universitaria, 1986, pp. 181-216.

MINSAL Ltda (1988) Hydrology, Salar de Atacama, Appendix V: Evaporation study.

Muller, J.C. (1996). Trente ans de lysimétrie en France (1960-1990) : Une technique, un outil pour l'étude de l'environnement. Un Point sur...FRA : INRA Editions;Comifer;Paris, 390 p.

Nichols, W.D. (1993). Estimating Discharge of Shallow Groundwater by Transpiration From Greasewood in the Northern Great Basin. American Geophysical Union in Water Resources Research 29 (8): 2771-2778. doi: https://doi.org/10.1029/93WR00930.

Rana, G. & Katerji N. (2000). Measurement and estimation of actual evapotranspiration in the field under mediterranean climate: A review. European Journal of Agronomy 13 (2-3): 125-153. doi: https://doi.org/10.1016/S1161-0301(00)00070-8.

Ritchie, J.T. & Burnett E. (1968). A precision weighing lysimeter for row crop water use studies. Agronomy Journal 60 (5): 545-549. doi: https://doi.org/10.2134/agronj1968.00021962006000050030x.

Saravanapavan, T. & Salvucci, G.D. (2000). Analysis of rate-limiting processes in soil evaporation with implications for soil resistance models. Advances in Water Resources 23: 493-502. doi: https://doi.org/10.1016/S0309-1708(99)00045-7.

Shah, N., Nachabe M. & Ross M. (2007). Extinction depth and evapotranspiration from groundwater under selected land covers. Ground Water 45(3): 329-338. doi: https://doi.org/10.1111/j.1745-6584.2007.00302.x

.

Schwaerzel, K. & Bohl H.P. (2003). An easily installable groundwater lysimeter to determine water balance components and hydraulic properties of peat soils. Hydrology and Earth System Sciences 7 (1): 23-32. doi: https://doi.org/10.5194/hess-7-23-2003.

Ugarte, M. (2007). Estimación de la evaporación en la cuenca del salar de aguas calientes II, puna II Región. Tesis para optar al Título de Geólogo. Universidad de Chile.

Wright, I.R. (1990). A lysimeter for the measurement of evaporation from high altitude grass. Hydrology in Mountainous Répons. I - Hydrologcal Measurements; the Water Cycle (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 193.

Xu C.-Y. & Chen D. (2005). Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes 19: 3717–3734. doi: https://doi.org/10.1002/hyp.5853.

Zhang, L., Dawes W.R., Slavich P.G., Meyer W.S., Thorburn P.J., Smith D.J. & Walker G.R. (1999). Growth and ground water uptake responses of Lucerne to changes in groundwater levels and salinity: lysimeter, isotope and modelling studies. Agricultural Water Management 39: 265-282. doi: https://doi.org/10.1016/S0378-3774(98)00082-1.