Aerodynamic analysis of an unmanned aerial vehicle with infrared camera for monitoring oil leakage in pipeline networks


Oil pipeline networks require periodic inspection to detect damages that can generate oil leakage in natural and human environments. These damages can be caused by geological hazard and interference from third party. In order to detect these damages, low-cost techniques that consider both the oil pipeline networks and the environment are required. In this paper, the aerodynamic analysis of an unmanned aerial vehicle (UAV) with Eppler 748 sailplane airfoil (wingspan of 1.635 m) is presented. The UAV can include a small infrared camera for monitoring oil leakage of a pipeline network using the infrared radiation related to oil. A computational fluid dynamics (CFD) model of the UAV is developed to predict its lift and drag coefficients as a function of the Reynolds number and the angle of attack (AoA). The air velocity profile around UAV is estimated with the CFD simulations. In addition, a scale model (1:6.5) of the UAV is fabricated using a 3D printer, which is tested employing a subsonic wind tunnel. For the UAV with AoA of 0, the drag and lift coefficients obtained with the CFD model have a similar behavior with respect to those measured through the subsonic wind tunnel. The designed UAV could be used for low-cost inspections of damages in oil pipeline networks in comparison with the use of helicopters or light aircraft.
PDF (Español (España))


Bardina, J. E., Huang, P. G., & Coakley, T. J. (1997).

Turbulence Modeling, Validation, Testing and Development, NASA Technical Memorandum 110446, 1997.

Bouix, R., Viot, P., & Lataillade, J. L. (2009). Polypropylene foam behaviour under dynamic loadings: Strain rate, density and microstructure effects. Int. J. Impact Eng,, 36, 329-342. doi: 10.1016/j.ijimpeng.2007.11.007

Bravo-Mosquera, P. D., Botero-Bolivar, L., Acevedo-Giraldo, D., & Cerón-Muñoz, H. D. (2017). Aerodynamic design analysis of a UAV for superficial research of volcanic environments. Aerosp. Sci. Technol., 70, 600-614. doi: 10.1016/j.ast.2017.09.005

Da Cunha, S. B. (2016). A review of quantitative risk assessment of onshore pipelines. J. Loss Prev. Proc. Ind., 44, 282-298. doi: 10.1016/j.jlp.2016.09.016

Du, X., Dori, A., Divo, E., Huayamave, V., & Zhu, F. (2018). Modeling the motion of small unmanned aerial system (sUAS) due to ground collision. Proc. IMechE Part G: J Aerosp. Eng., 232(10), 1961-1970.

Frederick, G.; Kaepp, G. A.; Kudelko, C. M., & Schuster, P. J. (1995). Optimization of Expanded Polypropylene Foam Coring to Improve Bumper Foam Core Energy Absorbing Capability. SAE Int., 950549,1-9. doi: 10.4271/950549

Gómez, C., & Green, D. R. (2017). Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping. Arab. J. Geosci., 10, 202. doi: 10.1007/s12517-017-2989-x

Guo, Y., Meng, X., Wang, D., Meng, T., & Liu, S. (2016). Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model. J. Nat. Gas Sci. Eng., 33, 18-29. doi: 10.1016/j.jngse.2016.04.052

Iqbal, H., Tesfamariam, S., Haider, H., & Sadiq, R. (2016). Inspection and maintenance of oil & gas pipelines: a review of policies. Struct. Infrastruct. Eng., 13(6), 1-23. doi: 10.1080/15732479.2016.1187632.

Jung-Ryul, L., Chang Min, C., Chan Yik, P., Chung Thanh, T., Hye Jin, S., Hyomi, J., & Eric, B. F. (2015). Spar disbond visualization in in-service composite UAV with ultrasonic propagation imager. Aerosp. Sci. Technol., 45, 180-185. doi: 10.1016/j.ast.2015.05.010.

Liang, W., Hu, J., Zhang, L., Guo, C., & Lin, W. (2012). Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM. Eng. Appl. Artif. Intel., 25(3), 594-608. doi: 10.1016/j.engappai.2011.08.010

Lima, G. F., Freitas, V. C. G., Araújo, R. P., Maitelli, A. L., & Salazar, A. O. (2017). PIG’s speed estimated with pressure transducers and Hall effect sensor: an industrial application of sensors to validate a testing laboratory. Sensors, 17, 2119. Doi: 10.3390/s17092119

Menter, F. R. (1993). Zonal two equation k–w turbulence models for aerodynamic flows. AIAA paper 93-2906.

Menter, F., Ferreira, C. J., Esch, T., & Konno, B. (2003). The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines,' International Gas Turbine Congress 2003, Tokyo, IGTC2003-TS-059

Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer, vol 4, Begell House Inc, pp. 625-632.

Mohamed, A., Hamdi, M. S., &Tahar, S. (2017). Using Computational Intelligence for the Safety Assessment of Oil and Gas Pipelines: A Survey. In Data Science and Big Data: An Environment of Computational Intelligence. Studies in Big Data, Pedrycz, W., Chen, S.M., Eds.; Springer International Publishing: Cham, pp. 189-207.

Munson, B. R., Okiishi, T. H., Rothmayer, A. P., & Huebsch, W. W. (2009). Fundamentals of fluid mechanics. 6th ed. Danvers, MA: John Wiley & Sons.

Panagiotou, P., Fotiadis-Karras, S., Yakinthos, K. (2018). Conceptual design of a Blended Wing Body MALE UAV. Aerosp. Sci. Technol., 73, 32-47. doi: 10.1016/j.ast.2017.11.032.

Panagiotou, P., Kaparos, P., Salpingidou, C., & Yakinthos, K. (2016). Aerodynamic design of a MALE UAV. Aerosp. Sci. Technol., 50, 127-138. doi: 10.1016/j.ast.2015.12.033.

Panagiotou, P., Loannidis, G., Tzivinikos, I., & Yakinthos, K. (2017). Experimental investigation of the wake and the wingtip vortices of a UAV model. Aerospace, 4, 53. doi: 10.3390/aerospace4040053

Raeisi, B., & Alighanbari, H. (2018). Effects of tilting rate variations on the aerodynamics of the tilting ducted fans mounted at the wing tips of a vertical take-off and landing unmanned aerial vehicle. Proc. IMechE Part G: J. Aerosp. Eng., 232(10), 1803-1813. doi: 10.1177/0954410017703146

Rifai, D., Abdalla, A. N., Razali, R., Ali, K., & Faraj, M. A. (2017). An Eddy current testing platform system for pipe defect inspection based on an optimized Eddy current technique probe design. Sensors, 17(3), 579. doi: 10.3390/s17030579

Rodríguez-Olivares, N. A., Cruz-Cruz, J. V., Gómez-Hernández, A., Hernández-Alvarado, R., Nava-Balanzar, L., Salgado-Jiménez, T., & Soto-Cajiga, J. A. (2018). Improvement of ultrasonic pulse generator for automatic pipeline inspection. Sensors, 18, 2950. doi: 10.3390/s18092950

Sahli, H., & El-Sheimy, N. (2016). A novel method to enhance pipeline trajectory determination using pipeline junctions. Sensors, 16, 567. doi: 10.3390/s16040567

Schlichting, H., & Gersten, K. (2017). Boundary-Layer Theory. 9th ed. Berlin, Germany: Springer Nature.

Shen, J., Su, Y., Liang, Q., & Zhu, X. (2018). Calculation and identification of the aerodynamic parameters for small-scaled fixed-wing UAVs. Sensors, 18, 206. doi: 10.3390/s18010206

Shukla, D., & Komerath, N. (2018). Multirotor drone aerodynamic interaction investigation. Drones, 2, 43. Doi: 10.3390/drones2040043

Shu-Jiao, T., Zong-Zhi, W., Ru-Jun, W., & Hao, W. (2016). Fire risk study of long-distance oil and gas pipeline based on QRA. Procedia Eng., 135, 369-375. doi: 10.1016/j.proeng.2016.01.144

Sóbester, A., Keane, A. J., Scanlan, J., & Bressloff, N. W. (2005). Conceptual design of UAV airframes using a generic geometry service. In Proceedings of the Infotech@Aerospace Conferences, Arlington, VA, USA, 26–29 September 2005. doi: 10.2514/6.2005-7079

Yang, F., Xue, X., Cai, C., Sun, Z., & Zhou, Q. (2018). Numerical simulation and analysis on spray drift movement of multirotor plant protection unmanned aerial vehicle. Energies, 11, 2399. doi: 10.3390/drones2040043

Yuhua, D., & Datao, Y. (2005). Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. J. Loss Prev. Proc. Ind., 18(2), 83-88. doi: 10.1016/j.jlp.2004.12.003

Zhou, Q., Wu, W., Liu, D., Li, K., & Qiao, Q. (2016). Estimation of corrosion failure likelihood of oil and gas pipeline based on fuzzy logic approach. Eng. Fail. Anal., 70, 48-55. doi: 10.1016/j.engfailanal.2016.07.014