Expresión de las b-defensinas LAP (péptido antimicrobiano lingual) y TAP (péptido antimicrobiano traqueal), así como psoriasina (S100A7), en la glándula mamaria bovina con mastitis crónica por Staphylococcus aureus
PDF
HTML

Palabras clave

Péptidos antimicrobianos
mastitis
qPCR. Antimicrobial peptides
mastitis
qPCR.

Cómo citar

del Villar Pérez, V. M., Barreras Serrano, A., Pujol Manríquez, L. C., Tinoco Gracia, L., Melgarejo, T., & Tamayo Sosa, A. R. (2016). Expresión de las b-defensinas LAP (péptido antimicrobiano lingual) y TAP (péptido antimicrobiano traqueal), así como psoriasina (S100A7), en la glándula mamaria bovina con mastitis crónica por Staphylococcus aureus. Acta Universitaria, 26(4), 29–35. https://doi.org/10.15174/au.2016.930

Resumen

La mastitis bovina es la enfermedad que más afecta al ganado lechero en todo el mundo, y se caracteriza por la inflamación de la glándula mamaria. La severidad de la inflamación depende del agente causal y de la respuesta del huésped. Los péptidos antimicrobianos juegan un papel importante en los mecanismos de defensa innatos en la glándula mamaria contra los microorganismos causantes de mastitis. Utilizando tiempo real cuantitativo (qPCR) en los tejidos de la glándula mamaria: cisterna, parénquima, Rosetta de Füerstenberg, esfínter y linfonódulo inguinal, infectados con mastitis por Sthapylococcus aureus, se encontró que las β-defensinas péptido antimicrobiano lingual (LAP, por sus siglas en inglés) y péptido antimicrobiano traqueal (TAP, por sus siglas en inglés) se expresan principalmente en cisterna y parénquima. La proteína S100A7 (psoriasin) se expresó mayormente en esfínter, y en menor grado en Roseta de Füerstenberg, cisterna y linfonódulo inguinal, con ausencia en parénquima. Se concluye que estos péptidos pudieran tener un papel fundamental en la defensa antimicrobiana contra mastitis causada por S. aureus en la glándula mamaria. 


https://doi.org/10.15174/au.2016.930
PDF
HTML

Citas

Calvinho, L. F. (1998). Diagnóstico bacteriológico de mastitis. En Primer Seminario Internacional Capacitagro (pp. 115-118). Buenos Aires: Pergamino.


Cormican, P., Meade, K. G., Cahalane, S., Narciandi, F., Chapwanya, A., Lloyd, A., & O’Farrelly, C. (2008). La evolución, la expresión y la eficacia en un grupo de nuevas especies bovina beta-defensinas. Inmunogenética, 60(3-4), 147-156.


Das, H., Ahmed, S. U., Shukla, S. K., Shukla, S., Latif, A., & Sharma, D. (2010). Two β defensin cationic peptides from mastitic milk of Bubalus bubalis. Asian Journal of Animal Sciences, 4(1), 1-12.


Diamond, G., Jones, D. E., & Bevins, C. L. (1993). Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proceedings of the National Academy of Sciences, 90(10), 4596-4600.


Diamond, G., Zasloff, M., Eck, H., Brasseur, M., Maloy, W. L., & Bevins, C. L. (1991). Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proceedings of the National Academy of Sciences, 88(9), 3952-3956.


Eckersall, P. D., Young, F. J., Nolan, A. M., Knight, C. H., McComb, C., Water-ston, M. M., Hogarth, C. J., Scott, E. M., & Fitzpatrick, J. X. (2006). Acute proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis. Journal of Dairy Science, 89(5),1488-1501.


Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology, 3(9), 710-720.


Gläser, R., Harder, J., Lange, H., Bartels, J., Christophers, E., & Schröder, J. M. (2005). Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature Immunology, 6(1), 57-64.


Goldammer, T., Zerbe, H., Molenaar, A., Schuberth, H. J., Brunner, R. M., Kata, S. R., & Seyfert, H. M. (2004). Mastitis increases mammary mRNA abundance of beta-defen,sin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clinical and Diagnostic Laboratory Immunology, 11(1), 174-185.


Infante, E., Aguilar, L. D., Gicquel, B., & Pando, R. H. (2005). Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clinical and Experimental Immunology, 141(1), 21-28.


Isobe, N., Hosoda, K., & Yoshimura, Y. (2009a). Immunolocalization of lingual antimicrobial peptide (LAP) in the bovine mammary gland. Animal Science Journal, 80(4), 446-450.


Isobe, N., Morimoto, K., Nakamura, J., Yamasaki, A., & Yoshimura, Y. (2009b). Intramammary challenge of lipopolysaccharide stimulates secretion of lingual antimicrobial peptide into milk of dairy cows. Journal of Dairy Science, 92(12), 6046-6051.


Isobe, N., Sugino, T., Taniguchi, K., Moriya, N., Hosoda, K., & Yoshimura, Y. (2011). Differential localization of lingual antimicrobial peptide in the digestive tract mucosal epithelium of calves. Veterinary Immunology and Immunopathology, 142(1-2), 87-94.


Kościuczuk, E. M., Lisowski, P., Jarczak, J., Krzyżewski, J., Zwierzchowski, L., & Bagnicka, E. (2014). Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Veterinary Research, 6(10), 246-259.


Lutzow, Y. C., Donaldson, L., Gray, C. P., Vuocolo, T., Pearson, R. D., Reverter, A., Byrne, K. A., Sheehy, P. A., Windon, R., & Tellam, R. L. (2008). Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus. BMC Veterinary Research, 4, 18. doi: 10.1186/1746-6148-4-18


Meyer, J. E., Harder, J., Sipos, B., Maune, S., Klöppel, G., Bartels, J., Schröder, J. M., & Gläser, R. (2008). Psoriasin (S100A7) is a principal antimicrobial peptide of the human tongue. Mucosal Immunology, 1(3), 239-243.


Mitchell, G. B, Al-Haddawi, M. H., Clark, M. E., Beveridge, J. D., & Caswell, J. L. (2007). Effect of Corticosteroids and Neuropeptides on the Expression of Defensins in Bovine Tracheal Epithelial Cells. Infection and Immunity, 75(3), 1325-133.


Petzl, W., Zerbe, H., Günther, J., Yang, W., Seyfert, H. M., Nürnberg, G., & Schuberth, H. J. (2008). Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Veterinary Research, 39(2), 18.


Regenhard, P., Leippe, M., Schubert, S., Podschun, R., Kalm, E., Grötzinger, J., & Looft, C. (2009). Antimicrobial activity of bovine psoriasin. Veterinary Microbiology, 136(3-4), 335-40.


Regenhard, P., Petzl, W., Zerbe, H., & Sauerwein, H. (2010). The antibacterial psoriasin is induced by E. coli infection in the bovine udder. Veterinary Microbiology, 143(2-4), 293-298.


Roosen, S., Exner, K., Paul, S., Schröder, J. M., Kalm, E., & Looft, C. (2004). Bovine beta-defensins: Identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue. Mammalian Genome, 15(10), 834-842.


Schonwetter, B. S., Stolzenberg, E. D., & Zasloff, M. A. (1995). Epithelial antibiotics induced at sites of inflammation. Science, 267(5204), 1645-1648.


Selsted, M. E., Tang, Y., Morris, W. L., McGuire, P. A., Novotny, M. J., Smith, W., Henschen, A. H., & Cullor, J. S. (1993). Purification, primary structure, and antibacterial activities of 13-defensins, a new family of antimicrobial peptides from bovine neutrophils. Journal of Biological Chemistry, 268(9), 6641-6648.


Singh, V. K., More, T., & Kumar, S. (2004). Separation of cationic proteins and antibiotic peptides from buffalo polymorphonuclear cells. Buffalo Journal, 2, 173-182.


Swanson, K., Gorodetsky, S., Good, L., Davis, S., Musgrave, D., Stelwagen, K., Farr, V., & Molenaar, A. (2004). Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infection and Immunity, 72(12), 7311-7314.


Tarver, A. P., Clark, D. P., Diamond, G., Russell, J. P., Erdjument-Bromage, H., Tempst, P., Cohen, K. S., Jones, D. E., Sweeney, R. W., Wines, M., Hwang, S., & Bevins, C. L. (1998). Enteric beta-defensin: Molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infection and Immunity, 66(3), 1045-1056.


Tetens, J., Friedrich, J. J., Hartmann, A., Schwerin, M., Kalm, E., & Thaller, G. (2010). The spatial expression pattern of antimicrobial peptides across the healthy bovine udder. Journal of Dairy Science, 93(2), 775-783.


Tomasinsig, L., De Conti, G., Skerlavaj, B., Piccinini, R., Mazzilli, M., D’Este, F., Tossi, A., & Zanetti, M. (2010). Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infection and Immunity, 78(4), 1781-1788.


Whelehan, C. J., Meade, K. G., Eckersall, P. D., Young, F. J., & O’Farrelly, C. (2011). Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innateimmune gene expression. Veterinary Immunology and Immunopathology, 140(3-4), 181-189.


Zhao C., Wang, I., & Lehrer, R. I. (1996). Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Letters, 396(2-3), 319-22.