Seasonal changes in soluble sugar concentration in pecan perennial organs (Carya illinoiensis [Wangenh.] Koch)

Abstract

Transport of sugars from assimilation tissues to reserve tissues determines growth or reproductive storage. The objective was to determine the concentrations of soluble sugars in pecan tree grown in an orchard located in Torreón, Coahuila, during the stages of production and dormancy. Samples of root, stem, branch, and bud emitted from the year (annual growth) were taken from four adult trees. During the dormancy higher concentrations of soluble sugars were observed than during the production stage. Root and annual outbreaks had similar concentrations, higher than the other two organs. The lowest concentration was always found in branches. Stem had a concentration similar to the branches during the production stage, while in the dormant stage, the stem had a higher concentration of sugars than the branches. Although the root has the highest concentrations of soluble sugars, the stem, by its size, accumulates the greatest amount of total sugars in the whole tree. It was estimated that the percentage of soluble sugars of the total carbon contained in the biomass represents a percentage value of 66%.

https://doi.org/10.15174/au.2019.2423
PDF (Español (España))

References

Ashton, M. S. & Kelty, M. J. (2017). The Practice of Silviculture: Applied Forest Ecology. John Wiley & Sons.

ASTM. (2001). D02-84R07: Test Method for Ash in Wood. ASTM International. West Conshohocken, PA 19428-2959, United States. 2 pág. Disponible en: http://file.yizimg.com/175706/2011120520563116.pdf

Aubrey, D. P. & Teskey, R. O. (2017). Stored root carbohydrates can maintain root respiration for extended periods. New Phytologist, 218(1), 142-152. https://doi.org/10.1111/nph.14972

Barbaroux, C. & Bréda, N. (2002). Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 22(17), 120110. https://doi.org/10.1093/treephys/22.17.1201

Bazot, S., Barthes, L., Blanot, D. & Fresneau, C. (2013). Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees Structure and Function, 27, 1023–1034. https://doi.org/10.1007/s00468-013-0853-5

Bonfante, P. & Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal simbiosis. Nature Communications, 1, 48 https://doi:10.1038/ncomms1046

Briceño-Contreras, E. A., Valenzuela-Núñez, L. M., Espino-Castillo, D. A., García-De La Peña, C., Esparza-Rivera, J. R. & Borja-De La Rosa, A. (2018). Contenido de almidón en órganos de nogal (Carya illinoensis) en dos etapas fenológicas. Revista Mexicana de Ciencias Agrícolas, 20(2018), 1-20. https://doi.org/10.29312/remexca.v0i20.987

Brucciamacchie, M. (1982). Structure, croissance et biomasse des régénérations naturelles de chêne rouvre (Quercus petraea Liebl.). Mémoire ENITEF.

Brunetto, G., Melo, G., Bastos-De, W., Moreno, T., Maurizio, Q. & Massimo, T. (2015). The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticultura, 37(4), 1089-1104. http://dx.doi.org/10.1590/0100-2945-103/15

Chapin, F. S., Schulze, E. D. & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423–447.

https://doi.org/10.1146/annurev.es.21.110190.002231

Chrestin, H., Marin, B., Jacob, J. L. & D’Auzac, J. (2018). Sucrose supply for latex production. En J. D’Auzac, J. L. Jacob & H. Chrestin (Eds.), Physiology of rubber tree latex (pp. 165-176). CRC Press Taylor and Francis Group.

Dickson, R. E. (1989). Carbon and nitrogen allocation in trees. Annals of Forest Science, 46, 631-647. Disponible en: https://www.afs-journal.org/articles/forest/pdf/1989/05/AFS_0003-4312_1989_46_Suppl_ART0142.pdf

Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D. & Vargas, R. (2014). Nonstructural Carbon in Woody Plants. Annual Review of Plant Biology, 65, 667–87. https://doi:10.1146/annurev-arplant-050213-040054

Dovis, V. L., Machado, E. C., Ribeiro, R. V., Magalhães-Filho, J. R., Marchiori, P. E. R. & Salesb, C. R. G. (2014). Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’ sweet orange trees with varying fruit load. Scientia Horticulturae, 174(22), 87-95. https://doi.org/10.1016/j.scienta.2014.05.011

Drexhage, M., Chauvière, M., Colin, F. & Nielsen, C. (1999). Development of structural root architecture and allometry of Quercus petraea. Canadian Journal of Forest Research, 29(5), 600-608. https://doi.org/10.1139/x99-027

Durand, M., Mainson, D., Porcheron, B., Maurousset, L., Lemoine, R. & Pourtau, N. (2018). Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 247(3), 587-611. https://doi:10.1007/s00425-017-2807-4

García-Hernández, J. L., Orona-Castillo, I., González-Cervantes, G., Valdez-Cepeda, R. D., Murillo-Amador, B., Troyo-Diéguez, E. & Fortis-Hernández, M. (2009). Interacciones nutrimentales y normas de diagnóstico de nutrimento compuesto en nogal pecanero (Carya illinoensis). Revista Chapingo Serie Horticultura, 15(2), 141–147. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1027-152X2009000200006

Gardea, A. A., Martínez-Téllez, M. A. & Yahia, E. M. (2011) Pecan (Carya illinoensis (Wangenh. K. Koch). En E. M. Yahia (Ed.), Postharvest biology and Technology of Tropical and Subtropical Fruits (pp. 143–165). Woodhead Publishing Limited.

Gilson, A., Barthes, L., Delpierre, N., Dufrêne, É., Fresneau, C. & Bazot, S. (2014). Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiology, 34 (7), 716–729. https://doi:10.1093/treephys/tpu060

Hagedorn, F., Joseph, J., Peter, M., Luster, J., Pritsch, K., Geppert, U., Kerner, R., Molinier, V., Egli, S., Schaub, M., Liu, J. F., Li, M., Sever, K., Weiler, M., Siegwolf, R. T. W., Gessler, A. & Arend, M. (2016). Recovery of trees from drought depends on belowground sink control. Nature Plants, 2016(2), 16111. https://doi:10.1038/nplants.2016.111

Hartmann, H. & Trumbore, S. (2016). Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist, 211(2): 386-403. https://doi:10.1111/nph.13955

IMTA (Instituto Mexicano de Tecnología del Agua). (2005). Extractor rápido de información climatológica versión 2.0. (ERIC 2.0). Software. IMTA. Secretaría del Medio Ambiente y Recursos Naturales.

INEGI. (2012). Anuario Estadístico del Estado de Coahuila de Zaragoza. Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags. México.

INTI-CITEMA. (2003). Catálogo de Densidad de Maderas por Nombre Científico. Instituto Nacional de Tecnología Industrial - Centro de Investigación y Desarrollo de la Industria de la Madera y Afines. Buenos Aires, Argentina.

Julius, B. T., Leach, K. A., Tran, T. M., Mertz, R. A. & Braun, D. M. 2017. Sugar Transporters in Plants: New Insights and Discoveries. Plant and Cell Physiology, 58(9), 1442-1460. https://doi:10.1093/pcp/pcx090

Kannenberg, S. A., Novick, K. A. & Phillips, R. P. (2018). Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. Tree Physiology, 38(4), 582–590. https://doi:10.1093/treephys/tpx119

Knapp, B. O., Olson, M. G. & Dey, D. C. (2017). Early stump sprout development after two levels of harvest in a Midwestern bottomland hardwood forest. Forest Science, 63(4), 377–387. https://doi.org/10.5849/FS-2016-029R2

Kramer, P. J. & Kozlowski, T. T. (1979). Physiology of woody plants. Academic Press, London.

Lehmann, M. M., Gamarra, B., Kahmen, A., Siegwolf, R. T. W. & Saurer, M. (2017). Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species. Plant, Cell & Environment, 40, 1658-1670. https://doi.org/10.1111/pce.12974

Lemoine, R., La-Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J. L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J. & Durand, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4, 272. https://doi:10.3389/fpls.2013.00272

Madero, E. (2003). La nuez pecán. Revista IDIA XXI, 3(5), 1–5.

Magel-Christian, E. & Hubert-Ziegler, J. A. (1994). Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees, 8(4), 165–171. https://doi.org/10.1007/BF00196843

Magel, E., Einig, W. & Hampp, R. (2000). Carbohydrates in trees. En A. K. Gupta & and N. Kaur (Eds.), Developments in Crop Science (pp. 317-336). Elsevier, Volume 26.

Martínez-Díaz, G. & Jiménez-León, J. (2008). Composición florística en los huertos de nogal pecanero en México. Libro Técnico No. 8. INIFAP Centro de Investigación Regional del Noroeste. México.

Martínez-Vilalta, J. A., Sala, D., Asensio, L. A., Galiano, G. N., Hoch, S., Palacio, F. I., & Piper-Lloret, F. (2016). Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecological Monographs, 86, 495–516. https://doi.org/10.1002/ecm.1231

Medina-Morales, M. C. & Cano-Ríos, P. (2002). Tecnología de producción en nogal pecanero. Libro Técnico 3. INIFAP Centro de Investigación Regional Norte Centro. México.

Meili, l., Yanmei, X., Jiacun, G., Wang, Z. & Dali, G. (2015). Whole-tree dynamics of non-structural carbohydrate and nitrogen pools across different seasons and in response to girdling in two temperate trees. Oecologia, 177(2), 333-344. https://doi:10.1007/s00442-014-3186-1

Moscatello, S., Proietti, S., Augusti, A., Scartazza, A., Walker, R. P., Famiani, F. & Battistelli, A. (2017). Late summer photosynthesis and storage carbohydrates in walnut (Juglans regia L.). Plant Physiology and Biochemistry, 118, 618-626. https://doi:10.1016/j.plaphy.2017.07.025

Muncharaz-Pou, M. (2012). Origen y descripción botánica de la especie (Carya illinoensis Koch). En M. Muncharaz-Pou (Ed.), El nogal: Técnicas de producción de fruto y madera (pp. 15–27). Editorial Mundi-Prensa.

Nägele, T. & Heyer, A. G. (2013). Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. New Phytologyst, 198(3), 777-87. https://doi:10.1111/nph.12201

Nzunda, E. F., Griffiths, M. E. & Lawes, M. J. (2008). Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Functional Ecology, 22, 577–582. https://doi.org/10.1111/j.1365-2435.2008.01405.x

Orona, I., Espinoza, J., González, G., Murillo, B., García, J. & Santamaría, J. (2006). Aspectos técnicos y socioeconómicos de la producción de nuez (Carya illinoensis Koch.) en la Comarca Lagunera, México. Agricultura Técnica en México, 32(3): 295-301. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0568-25172006000300005

Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86. https://doi:10.3389/fpls.2014.00086

Peng, T., Zhu, X., Duan, N. & Liu, J. H. (2014). PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant, Cell & Environment, 37(12), 2754-67. https://doi:10.1111/pce.12384

Potisek, M. C., González, G., Valenzuela, L., González, J. L. & Velásquez, M. (2010). Respuesta del desarrollo y calidad de plantas de nogal pecanero a la fertilización nitrogenada bajo condiciones de invernadero. Agrofaz, 10(3), 191-197.

Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., Murakami, P., Schaberg, P. G. & Xu, X. M. (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197, 850–861. https://doi:10.1111/nph.12042

Rodríguez, R., Jiménez, J., Aguirre, O., Treviño, E. & Treviño, E. (2006). Estimación de carbono almacenado de niebla en Tamaulipas, México. Ciencia UANL, 9(2), 179-188.

Saveyn, A., Steppe, K., Ubierna, N. & Dawson, T. E. (2010). Woody tissue photosynthesis and its contribution to trunkgrowth and bud development in young plants. Plant, Cell & Environment, 33, 1949-1958. https://doi:10.1111/j.1365-3040.2010.02197.x.

SIAP-SAGARPA. (2015). Cierre de la producción agrícola por cultivo en ciclos perennes 2015 modalidad riego en la región lagunera: Coahuila-Durango, México. Servicio de Información Agroalimentaria y Pesquera - Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Disponible en: http://infosiap.siap.gob.mx/aagricola_siap_gb/ientidad/index.jsp [Última consulta: 13 de agosto de 2018].

SIAP-SAGARPA. (2017). Avance de siembras y cosechas de la producción agrícola por cultivo en ciclos perennes 2017 modalidad riego resumen nacional por cultivo. Servicio de Información Agroalimentaria y Pesquera - Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Disponible en: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/avancenacionalsinprograma.do;jsessionid=2bdeb258aad522e60cf79cec09b95e82 [Última consulta: 13 de agosto de 2018].

Tarkowski, Ł. P. & Van den Ende, W. (2015). Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in Plant Science, 6, 203. http://doi.org/10.3389/fpls.2015.00203

Titus, J. S. & Kang, S. M. (1982). Nitrogen metabolism, translocation, and recycling in apple trees. Horticultural Reviews, 4, 204–246. https://doi.org/10.1002/9781118060773.ch7

USDA-NRCS. (2016). Pecan (Carya illinoinensis (Wangenh) K. Koch). United States Department of Agriculture - Natural Resources Conservation Service. Disponible en: http://plants.usda.gov/classification.html [Última consulta: 13 de agosto de 2018].

Valenzuela-Núñez, L. M., Gérant, D., Maillard, P. Bréda, N. J. J., González-Cervantes, G. & Sánchez-Cohen, I. (2011). Evidence for a 26kDA vegetative storage protein in the stem sapwood of mature pedunculate oak. Interciencia, 36(2), 142-147. Disponible en: http://www.redalyc.org/html/339/33917765009/

Valenzuela-Núñez, L. M., Maillard, P., González-Barrios, J. L. & González-Cervantes, G. (2014). Carbohydrate balance in different plant compartments of oak (Quercus petraea) and beech (Fagus sylvatica) subjected to defoliation and shade. Revista Chapingo Serie Zonas Áridas, 13(1), 33–38. Disponible en: https://chapingo.mx/revistas/zonas_aridas/contenido.php?id_articulo=1694&id_revistas=8

van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22, 280-283.

Veillet, F., Gaillard, C., Coutos-Thévenot, P. & La Camera, S. (2016). Targeting the AtCWIN1 gene to explore the role of invertases in sucrose transport in roots and during Botrytis cinerea infection. Frontiers in Plant Science, 7, 1899. https://doi:10.3389/fpls.2016.01899

Wang, Q. W., Qi, L., W. Zhou, C.-G. Liu, D. Yu & Dai, L. (2018). Carbon dynamics in the deciduous broadleaf tree Erman’s birch (Betula ermanii) at the subalpine treeline on Changbai Mountain, Northeast China. American Journal of Botany, 105(1), 42–49. https://doi.org/10.1002/ajb2.1006

Woodruff, D. R. (2014). The impacts of water stress on phloem transport in Douglas-fir trees. Tree Physiology, 34, 5–14. https://doi:10.1093/treephys/tpt106

Zermeño-González, A., Cruz-Santes, C. I., Munguía-López, J. P., Catalán-Valencia, E. A., Campos-Magaña, G. & Cortés-Bracho, J. (2014). Efecto del sistema de riego y clima en la eficiencia del uso de agua de nogal pecanero. Terra Latinoamericana, 32(1), 23–33. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792014000100023

Zhao, Z., Liu, H., Wang, C. & Xu, J. R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 2013(14), 274. https://doi.org/10.1186/1471-2164-14-274