Yield, nutrimental and in vitro ruminal fermentation profiles of maralfal fa grass (Cenchrus purpureus Schumach.) Morrone at different cutting frequencies in warm weather

Abstract

The objective of this experiment was to evaluate the yield, nutrimental and in vitro ruminal fermentation profiles of maralfalfa grass (Cenchrus purpureus Schumach.) Morrone, at four harvest frequencies. Treatments were allocated in a randomized block design in divided plots with three replications. Data were analyzed using the Statistical Analysis Software (SAS) general lineal model (GLM) procedure, and a comparison of means (Tukey, α = 0.05) was made. The maximum biomass yield (20.2 kg-1 DM ha-1), NDF (66.7%), LC (45.4%), energy (16.3 MJ kg-1 DM) and CO2 (89.7%) were found in the cutting frequency at 120 days (p < 0.05). The highest content of CP (9.3%), CH (17.6%), ash (11.7%) moisture (8.4%) and ADL (4.7%), acetic acid (77.8%), propionic acid (29.4%), butyric acid (12.6%), CH4 (11.9%) and IVDMD (55.6%) was found in the frequency at every 30 days (p < 0.05). The content of EE (1.8%; p < 0.05) was higher in the cutoff frequency to day 90. The maralfalfa grass has a better chemical composition, increased production of AGV in early stages of court, allowing it to be a good source in animal feed production.

https://doi.org/10.15174/au.2019.2204
PDF (Español (España))

References

Ansah, T., Osafo, E. L. K. & Hansen, H. H. (2010). Herbage yield and chemical composition of four varieties of napier (Pennisetum purpureum) grass harvested at three different days after planting. Agriculture and Biology Journal of North America, 1(5), 923-929.

AOAC. (1990). Association of Official Analytical Chemists Official Methods of Analysis. 15th ed. Official Methods of Analysis. Washington, DC, USA. 1298.

ASTM. (1996). American Society for Testing and Materials. Standard Test Method for gross calorific value of refuse–derived fuel by the bomb calorimeter. ASTM E711, Annual Book of ASTM Standards. Waste management, 265-271.

Barrera, A. A. E., Avellaneda, C. J. H., Tapia, M. E. O., Peña, G. M. M., Molina, H. C. A. & Casanova, F. L. M. (2015). Chemical composition and degradation four species of Pennisetum sp. Ciencia y Tecnología, 8(2), 13-27.

Boadi, D. A. & Wittenberg, K. M. (2002). Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Science, 82(2), 201-206.

Bonilla, C. J. A. & Lemus, F. C. (2012). Enteric methane emission by ruminants and its contribution to global climate change. Review. Revista Mexicana de Ciencias Pecuarias, 3(2), 215-246.

Calzada, M. J. M., Enríquez, Q. J. F., Hernández, G. A., Ortega, J. E. & Mendoza, P. S. I. (2014). Análisis de crecimiento del pasto maralfalfa (Pennisetum sp.) en clima cálido subhúmedo. Revista Mexicana de Ciencias Pecuarias, 5(2), 247-260.

Cárdenas, R. L. R., Pinto, R. R., Medina, F. J., Guevara, F., Gómez, H., Hernández, A. & Carmona J. (2012). Producción y calidad del pasto maralfalfa (Pennisetum sp) durante la época seca. Quehacer Científico en Chiapas, 1(13), 38-46.

Cardona, M. E., Ríos, A. J., Peña, D. J., Ríos, A. L. (2013). Pretratamiento alcalino de pasto Elefante (Pennisetum sp) y King grass (Pennisetum hybridum) cultivados en Colombia para la producción de bioetanol. Información Tecnológica, 24(5), 69-80.

Chacón, H. P. A. & Vargas, R. C. F. (2009). Degradabilidad y calidad del Pennisetum purpureum cv. King grass a tres edades de rebrote. Agronomía mesoamericana, 20(2), 399-408.

Chemiskuy, A. M., Giussani, M. L., Scataglini, A. M., Kellogg, A. E. & Morrone, O. (2010). Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus. Annals of Botany, 106, 107–130.

Dijkstra, J. (1994). Production and absorption of volatile fatty acids in the rumen. Livestock Production Science, 39, 61-69.